JK Research Journal in Mathematics and Computer Sciences
 Compact Weighted Composition Operators on a Space of Operators

Kamaljeet Kour
Department of Mathematics Govt. College for Women Parade Ground, Jammu J\&K- India

Abstract

Let $L(E)$ be a locally convex space of all continuous linear transformations from a locally convex space E into itself, which is equipped with the topology of uniform convergence on bounded subsets of E. In this paper, we characterize compact weighted composition operators on these spaces.

Keywords: Locally convex space; topology of uniform convergence on bounded sets; weighted composition operator. 1991 AMS Mathematics Subject Classification: Primary 47B38; Secondary 46A32, 47 B48

Introduction

Let E be a vector space and $L(E)$ a vector space of transformations from E into itself. Let T $\in L(E)$ be such that $T A \in L(E)$ whenever $A \in L(E)$. Here $T A(x)=T(A x)$ for all $x \in E$. A multiplication operator denoted by M_{T} on $L(E)$ has the form : $M_{T}(A)=T A$ for all $A \in L(E)$. Similarly, a composition operator C_{T} on $L(E)$ has the form : $C_{T}(A)=A T$ for all $A \in L(E)$. For $S, T \in L(E)$, we have a weighted composition operator $W_{S, T}$ on $L(E)$ given by $W_{S, T}(A)=S A T$ for all $A \in L(E)$. These operators on different function spaces have been the subject matter of various papers in recent years, see for example [4], [5], [6] and the references listed therein. For a non-trivial locally convex space E, let \boldsymbol{P} denote the family of all continuous seminorms on E and \boldsymbol{B} denote the family of all bounded subsets of E. For each $p \in \boldsymbol{P}$ and $K \in \boldsymbol{B}$, we define the seminorm $\|.\|_{p, K}$ on $L(E)$ as $\|.\|_{p, K}=\sup \{p(A x): x \in$ $K\}$ for all $A \in L(E)$. Then the family $\left\{\|.\|_{p, K}: p \in \boldsymbol{P}, K \in \boldsymbol{B}\right\}$ of seminorms defines a locally convex by $L_{b}(E)$. The convergence in this topology is the uniform convergence on bounded subsets of E. For details about topologies on a space of operators, we refer to Grothendieck [2] and Kothe [3].

Operator On $L_{b}(E)$

Composition operators, multiplication operators and weighted composition operators on $L_{b}(E)$ has been characterized by Singh, Singh and Takagi [6]
whereas idempotent and invertible properties of such operators were characterized by Singh, Singh and the author in [5]. The following theorems have been proved in [6].

JK Research Journal in Mathematics and Computer Sciences

Theorem A: Let T be a linear transformation on E. Then C_{T} is a composition operator on $L_{b}(E)$ if and only if T is continuous on E. Also, M_{T} is a multiplication operator on $L_{b}(E)$ if and only if T is continuous on E. Using this result, it follows that if S and T are continuous linear transformations on E, then the associated transformation $W_{S, T}\left(=M_{S} C_{T}\right)$ is a weighted composition operator on $L_{b}(E)$. The converse statement is not true. For instance, take S to be the zero operator O on E. Then the transformation $W_{O, T}$ is a weighted composition operator(in fact, zero operator) on $L_{b}(E)$, even if T is not continuous. The case $T=O$ gives rise to the similar situation. If these two possibilities are excluded, the converse is also valid which is given as under:

Theorem B: Let E is a metrizable locally convex space and S, T be non-zero linear transformations on E. Then $W_{S, T}$ is a weighted composition operator on $L_{b}(E)$ if and only if both S and T are continuous. The most important examples of metrizable locally convex spaces often have the structure of normed linear spaces. Let E be a normed linear space with norm $\|.\|_{E}$. Then $L_{b}(E)$ is the usual space of all continuous (or bounded) linear transformations on E. It is an algebra with norm:
$\|T\|_{L}=\sup \left\{\|T x\|_{E}: x \in B_{I}\right\}$, where $B_{I}=\left\{x \in E:\|x\|_{E} \leq l\right\}$. Similarly, if we define $\left\|W_{S, T}\right\|=$ $\sup \left\{\left\|W_{S, T}(A)\right\|_{L}: A \in L_{b}(E),\|A\|_{L} \leq I\right\}$

Theorem C: Let E be a normed linear space, and let S and T be non zero linear transformations on E. Then $W_{S, T}$ is a weighted composition operator on $L_{b}(E)$ if and only if both S and T are continuous. In this case, $\quad\left\|W_{S, T}\right\|=\|S\|_{L}\|T\|_{L} . \quad$ We present two examples of operators S and T : one where the corresponding transformation $W_{S, T}$ is a operator and in the second, it is not an operator.

Example 1: Let $E=l^{2}$ be the Hilbert space of all square summable sequences of complex numbers. For a bounded sequence $\left\{a_{n}\right\}$ of complex numbers, define a transformation S on l^{2} as $S\left(\left\{x_{n}\right\}\right)=\left\{a_{n}\right.$ $\left.x_{n}\right\}$ for all $\left\{x_{n}\right\}$ in l^{2}. Then $S \in L_{b}(E)$ and $\|S\|_{L}=\sup \left\{\left|a_{n}\right|: n \in N\right\}$. Also, let T be the unilateral shift operator on E. Then $T \in L_{b}(E)$ and $\|T\|_{L}=1$. Using Theorem C, it follows that $W_{S, T}$ is a weighted composition operator on $L_{b}(E)$ and $\left\|W_{S, T}\right\|=\|S\|_{L}$.

Example2: Let $E=C^{\infty}[0,1]$ be the linear space of all infinitely differentiable functions f in $[0,1]$ such that the $n^{\text {th }}$ derivative $f^{(n)}$ is continuous on $[0,1]$ for all n. Under the supremum norm, E becomes a normed linear space but it is not complete. Now define a linear transformation T on E as $T f=f^{\prime}$ for

JK Research Journal in Mathematics and Computer Sciences

all $f \in E$. Then T is not bounded ([1]) and so this T does not induce a composition operator C_{T} nor a weighted composition operator $W_{T, T}$ on $L_{b}(E)$.

Compact Weighted Composition Operator

Compactness of weighted composition operators on L^{p}-spaces, H^{p}-spaces and on spaces of continuous functions has been studied by various authors. For details, we refer to [4]. The aim of this paper is to study compact weighted composition operators on $L_{b}(E)$, when E is a Banach space with the norm $\|$.$\| . For a Banach space E, L_{b}(E)$ is denoted by $B(E)$ and is a Banach algebra with the norm given by
$\|A\|_{B}=\sup \left\{\|A x\|: x \in B_{l}\right\}$, where $B_{I}=\left\{x \in E:\|x\|_{E} \leq l\right\}$.
For presenting the main result, we require the following two propositions:

Proposition 3.1: Let E be a Banach space and K be a bounded subset of E satisfying the condition:
$(*)$ "For any sequence $\left\{x_{n}\right\}$ in K and $\varepsilon>0$, there corresponds a subsequence $\left\{x_{n_{i}}\right\}$ such that \| $x_{n_{i}}-x_{n_{j}} \|<\varepsilon$ for all $x_{n_{i}}, x_{n_{j}}$ in the sequence." Then the closure \bar{K} of K is a compact subset of E.

Proof: To prove that \bar{K} is compact, we show that every sequence in K has a convergent subsequence. Let $\left\{x_{n}\right\}$ be a sequence in K. Using $(*)$ with $\varepsilon=1$, take a subsequence $\left\{x_{m}^{(1)}\right\}$. Inductively, we chose a $k^{\text {th }}$ sequence $\left\{x_{m}^{(k)}\right\}$ from $(k-l)^{\text {th }}$ subsequence $\left\{x_{n}^{(k-1)}\right\}$ using $(*)$ with $\varepsilon=\frac{1}{k}$. Writing $k^{\text {th }}$ term of the $k^{\text {th }}$ subsequence $\left\{x_{m}^{(k)}\right\}$ by x_{k}, the resulting sequence $\left\{x_{k}\right\}$ is a subsequence of the original sequence $\left\{x_{n}\right\}$ and is a Cauchy sequence. Since \bar{K} is complete, so $\left\{x_{k}\right\}$ is convergent.

Notation: Let $x \in E$ and M be a subset of E. Then the distance from x to M is denoted by $d(x, M)$ and is given by

$$
d(x, M)=\inf \{\|x-y\|: y \in M\}
$$

Proposition 3.2: Let K be a bounded subset of E satisfying the property: To any $\varepsilon>0$, there exists a finite dimensional subspace M of E such that $d(x, M)<\varepsilon$ for all $x \in M$. Then \bar{K} is compact.

Proof: By Proposition 3.1, it suffices to show that K satisfies the condition (*). Let $\left\{x_{n}\right\}$ be a sequence in K and $\varepsilon>0$ be given. By our assumption, there is a finite dimensional subspace M such that $d(x, M)<\frac{\varepsilon}{3}$ for all $x \in K$. For each x_{n}, take an element y_{n} of M with $\left\|x_{n}-y_{n}\right\|<\frac{\varepsilon}{3}$. Since $\left\{x_{n}\right\}$ is

JK Research Journal in Mathematics and Computer Sciences

bounded, $\left\{y_{n}\right\}$ becomes a bounded sequence in the finite- dimensional space M and so $\left\{y_{n}\right\}$ has a convergent subsequence $\left\{y_{n_{i}}\right\}$. This implies that there exists a number i_{o} such that for $i, j \geq i_{o}$, we have
\| $y_{n_{i}}-y_{n_{j}} \|<\frac{\varepsilon}{3}$. Therefore, for $i, j \geq i_{o,}$, we have $\quad\left\|x_{n_{i}}-x_{n_{j}}\right\| \leq\left\|x_{n_{i}}-y_{n_{i}}\right\|+\|$ $y_{n_{i}}-y_{n_{j}}\|+\| y_{n_{j}}-x_{n_{j}} \|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$. This shows that the subsequence $\left\{x_{n_{i}}: i \geq i_{o}\right\}$ satisfies the condition (*). Hence our result follows from proposition 3.1.

We will now present a characterization of compact weighted composition operators on $B(E)$, when E is a Banach space. By B_{2}, we denote the closed unit ball of $\mathrm{B}(E)$.

Theorem 3.3: Let S, T be non-zero operators on E. Then $W_{S, T}$ is a compact weighted composition operator on $B(E)$ if and only if both S and T are compact.

Proof: Suppose that S and T are compact. To prove that $W_{S, T}$ is compact, we must show that the closure of $W_{S, T}\left(B_{2}\right)$ is compact. Using Proposition 3.1 with $E=B(E)$ and $K=W_{S, T}\left(B_{2}\right)$, we see the following statement is to be proved: For any sequence $\left\{A_{n}\right\}$ in B_{2} and $\varepsilon>0$, there corresponds a subsequence $\left\{A_{n_{i}}\right\}$ such that $\left\|W_{S, T} A_{n_{i}}-W_{S, T} A_{n_{j}}\right\|_{B}<\varepsilon$ for all pairs $A_{n_{i}}, A_{n_{j}}$ in the subsequence. Take ε_{l} with $\quad 0<\varepsilon_{l}\|S\|_{B}<\frac{\varepsilon}{3}$, and put $N(x)=\left\{y \in E:\|y-x\|<\varepsilon_{l}\right\}$
for $x \in T\left(B_{l}\right)$. Since the closure of $T\left(B_{I}\right)$ is compact, we can choose finitely many element $x_{1}, x_{2}, \ldots \ldots x_{m}$ of $T\left(B_{l}\right)$ such that $T\left(B_{l}\right) \square \bigcup_{k=1}^{m} N\left(x_{k}\right)$. For each $k=1,2,3, \ldots ., m$, define a $k^{\text {th }}$ sequence $\left\{y_{n}^{(k)}\right\}$ by $\left\{y_{n}^{(k)}\right\}=A_{n} x_{k}$ for $n=1,2, \ldots$. . Then each sequence $\left\{y_{n}^{(k)}\right\}$ is bounded, and so by compactness of S, we can find a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that m sequences $\left\{S y_{n_{i}}^{(1)}\right\},\left\{S y_{n_{i}}^{(2)}\right\}, \ldots \ldots,\left\{S y_{n_{i}}^{(m)}\right\}$ are all convergent. Here we may assume that $\left\{n_{i}\right\}$ satisfies

$$
\left\|S y_{n_{i}}^{(k)}-S y_{n_{j}}^{(k)}\right\|<\frac{\varepsilon}{3}
$$

for all pairs n_{i}, n_{j} and $k=1,2,3, \ldots \ldots, m$. Now let $z \in B_{l}$ be arbitrary. Then by our choice of x_{l}, $x_{2}, \ldots \ldots, x_{m}$, there exists atleast one x_{k} such that $T(z) \in N\left(x_{k}\right)$, that is,

$$
\left\|T(z)-x_{k}\right\|<\varepsilon_{l} .
$$

If n_{i} and n_{j} are elements of the above subsequence $\left\{n_{i}\right\}$, then

$$
\begin{aligned}
& \left\|W_{S, T}\left(A_{n_{i}}(z)\right)-W_{S, T}\left(A_{n_{j}}(z)\right)\right\| \\
& \leq\left\|S A_{n_{i}} T(z)-S A_{n_{j}} T(z)\right\|
\end{aligned}
$$

JK Research Journal in Mathematics and Computer Sciences

$\leq\left\|S A_{n_{i}} T(z)-S A_{n_{i}}\left(x_{k}\right)\right\|+\left\|S A_{n_{i}}\left(x_{k}\right)-S A_{n_{j}}\left(x_{k}\right)\right\|+\left\|S A_{n_{j}}\left(x_{k}\right)-S A_{n_{j}} T(z)\right\|$
$\leq\|S\|_{B}\left\|A_{n_{i}}\right\|_{\mathrm{B}}\left\|T(z)-x_{k}\right\|+\left\|S y_{n_{i}}^{(k)}-S y_{n_{j}}^{(k)}\right\|+\|S\|_{B}\left\|A_{n_{j}}\right\|_{B}\left\|x_{k}-T(z)\right\|$
$<\varepsilon_{I}\|S\|_{B}+\frac{\varepsilon}{3}+\varepsilon_{l}\|S\|_{B}<\varepsilon$.
Since $z \in B_{l}$ was arbitrary, we obtain $\quad\left\|W_{S, T} A_{n_{i}}-W_{S, T} A_{n_{j}}\right\|_{B}<\varepsilon$.
For the other way part, suppose $W_{S, T}$ is compact. We first show that S is compact. Let $\left\{y_{n}\right\}$ be a sequence in B_{l} and choose non-zero elements x_{o} and z_{o} of E such that $T\left(z_{o}\right)=x_{o}$. By HahnBanach Theorem, there is a continuous linear functional f of E such that $f\left(x_{o}\right)=1$ and $\|f\|=1$. For any n, define $\quad A_{n}: E \rightarrow E$ as $A_{n}(x)=f(x) y_{n}$ for each $x \in E$. Then clearly $\left\{A_{n}\right\}$ is a sequence in $B(E)$ and $\left\|A_{n}\right\| \leq 1$, that is, it is a sequence in B_{2}. Since $W_{S, T}$ is compact, there exists a subsequence $\left\{A_{n_{i}}\right\}$ of $\left\{A_{n}\right\}$ and $A \in B(E)$ such that $\left\|W_{S, T} A_{n_{i}}-A\right\|_{B} \rightarrow 0$.

Also, we have $\quad W_{S, T}\left(A_{n}\left(z_{o}\right)\right)=S A_{n_{o}} T\left(z_{o}\right)=S A_{n_{o}}\left(x_{o}\right)=S\left(f\left(x_{o}\right) y_{n}\right)=S\left(y_{n}\right)$ and so $\left\|S y_{n_{i}}-A\left(z_{o}\right)\right\|$ $=\left\|W_{S, T}\left(A_{n_{i}}\left(z_{o}\right)\right)-A\left(z_{o}\right)\right\| \leq\left\|W_{S, T} A_{n_{i}}-A\right\|_{B}\left\|z_{o}\right\| \rightarrow 0$.

Thus we find a subsequence $\left\{y_{n_{i}}\right\}$ such that $\left\{S y_{n_{i}}\right\}$ is convergent. Hence S is compact.
Finally, we show that T is compact. To see this, we assume on the contrary that T is not compact, that is, $\overline{T\left(B_{1}\right)}$ is not a compact set. Then, by Proposition 3.2, there exists a δ such that $0<\delta \leq 1$ and has the property:

For any finite dimensional subspace M, there exits an element x of $T\left(B_{1}\right)$ such that $d(x, M) \geq$ δ. Fix a non-zero element x_{1} of $T\left(B_{1}\right)$, and choose y_{o} so that $S\left(y_{o}\right) \neq 0$ and $\left\|y_{o}\right\| \leq \delta$. By Hahn Banach Theorem, we find an operator $A_{l} \in B(E)$ such that $A_{l}\left(x_{l}\right)=y_{o}$ and $\left\|A_{l}\right\|_{B} \leq \delta(\leq 1)$.
Next we construct an operator A_{2} as follows:
If M_{1} is the subspace spanned by x_{1}, the choice of δ gives an element x_{2} in $T\left(B_{1}\right)$ such that $d\left(x_{2}, M_{1}\right) \geq \delta$. Using Hahn-Banach Theorem again, we find a continuous linear functional f_{2} on E such that $f_{2}\left(x_{1}\right)=0, f_{2}\left(x_{2}\right)=1$ and $\left\|f_{2}\right\| \leq \frac{1}{d\left(x_{2}, M_{1}\right)}$.

Define $A_{2}: E \rightarrow E$ as $A_{2}(x)=f_{2}(x) y_{o}$ for all $x \in E$. Then clearly $A_{2} \in B(E)$ and satisfies

$$
A_{2}\left(x_{1}\right)=0, A_{2}\left(x_{2}\right)=y_{o} \text { and }\left\|A_{2}\right\|_{B} \leq 1 .
$$

Continuing in this way, we obtain a sequence $\left\{x_{n}\right\}$ in $T\left(B_{l}\right)$ and a sequence $\left\{\mathrm{A}_{\mathrm{n}}\right\}$ of operators in B_{2} such that $A_{n}\left(x_{m}\right)=0$ for $m=1,2, \ldots \ldots, n-1$ and $A_{n}\left(x_{n}\right)=y_{o}$.
Let z_{n} be an element of B_{l} with $T\left(z_{n}\right)=x_{n}$. Then for any m, n with $m<n$, we have

JK Research Journal in Mathematics and Computer Sciences

$$
\begin{aligned}
& \left\|W_{S, T}\left(A_{m}\right)-W_{S, T}\left(A_{n}\right)\right\|_{B} \geq\left\|W_{S, T}\left(A_{m}\left(z_{n}\right)\right)-W_{S, T}\left(A_{n}\left(z_{n}\right)\right)\right\|=\left\|S A_{m} T\left(z_{n}\right)-S A_{n} T\left(z_{n}\right)\right\| \\
& \quad=\left\|S A_{m}\left(x_{n}\right)-S A_{n}\left(x_{n}\right)\right\| \\
& \quad=\left\|0-S\left(y_{o}\right)\right\|=\left\|S\left(y_{o}\right)\right\|>0 \text {, which implies that }\left\{W_{S, T}\left(A_{n}\right)\right\} \text { cannot have a convergent }
\end{aligned}
$$ subsequence, while $\left\{A_{n}\right\}$ is a bounded sequence. This is contrary to the compactness of $W_{S, T}$. Thus we conclude that T must be compact.

Corollary3.4 Let E be an infinite dimensional Banach space. Then a composition operator C_{T} on $B(E)$ is compact if and only if T is a zero operator O on E. Also, a multiplication operator M_{T} on $B(E)$ is compact if and only if $T=O$ on E.

Proof: Let C_{T} (respectively, M_{T}) be a compact composition (respectively, multiplication) operator on $B(E)$. Then C_{T} (respectively, M_{T}) can be considered as a weighted composition operator $W_{I, T}\left(\right.$ respectively, $\left.W_{T, I}\right)$, where I is the identity operator on E. If T is non-zero, then the above Theorem 3.3 shows that I is compact. This contradicts the assumption that E is infinite dimensional. Hence T must be zero operator on E. The converse part is trivial.

Remark: The compactness of the weighted composition operator $W_{S, T}$ on $L_{B}(E)$ when E is a locally convex space will be worthwhile to prove and we are working in this direction.

References

[1] J.B.Conway (1990), A course in Functional Analysis, $2^{\text {nd }}$ Edition, Springer-Verlag, New York.
[2] A. Grothendieck (1975), Topological vector spaces, Gorden and Breach Science Publishers, New York.
[3] G. Kothe (1979), Topological vector spaces II, Springer-Verlag, New York.
[4] R.K.Singh, J.S.Manhas (1993), Composition operators on function spaces, North-Holland Math.Studies 179, Amsterdam.
[5] R.K.Singh, B.Singh, K.Kour (1995), Idempotent Composition and multiplication operators on a space of operators, Indian J. Math., Vol 37, 257-262.
[6] B.Singh, R.K.Singh, H.Takagi (1996), Weighted composition operators on a space of operators, J India Math.Soc.,Vol.62, 97-104.
[7] A E Taylor and D.C.Lay (1980), Introduction to Functional Analysis, $2^{\text {nd }}$ Edition, Wiley, New York.

