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Introduction 

 

Let E be a vector space and L(E) a vector space of transformations from E into itself. Let T 

∈ L(E) be such that TA ∈ L(E) whenever A ∈ L(E). Here  TA(x) = T(Ax) for all x ∈ E. A 

multiplication operator denoted by MT on L(E) has the form :  MT(A) = TA for all A ∈ L(E). Similarly, 

a composition operator CT on L(E) has the form : CT(A) = AT for all A ∈ L(E). For S,T ∈ L(E), we 

have a weighted composition operator WS,T on L(E) given by WS,T(A) = SAT for all A ∈ L(E).These 

operators on different function spaces have been the subject matter of various papers in recent years, see for 

example [4], [5], [6] and the references listed therein. For a non-trivial locally convex space E, let P 

denote the family of all continuous seminorms on E and B denote the family of all bounded subsets of 

E. For each p ∈    P and K ∈ B, we define the seminorm || . ||p, K on L(E) as  || . ||p, K = sup {p(Ax) : x ∈ 

K} for all A ∈ L(E).Then the family{|| . ||p, K: p ∈ P, K ∈ ΒΒΒΒ} of seminorms defines a locally convex by 

Lb(E). The convergence in this topology is the uniform convergence on bounded subsets of E. For 

details about topologies on a space of operators, we refer to Grothendieck [2] and Kothe [3]. 

Operator On Lb(E) 

          Composition operators, multiplication operators and weighted composition operators on Lb(E) 

has been characterized by Singh, Singh and Takagi [6]  

whereas idempotent and invertible properties of such operators were characterized by Singh, Singh 

and the author in [5]. The following theorems have been proved in [6]. 
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Theorem A: Let T be a linear transformation on E. Then CT is a composition operator on Lb(E) if and 

only if T is continuous on E. Also, MT is a multiplication operator on Lb(E) if and only if T is 

continuous on E.  Using this result, it follows that if S and T are continuous linear transformations on 

E, then the associated transformation WS,T (= MS CT) is a weighted composition  operator on Lb(E). 

The converse statement is not true. For instance, take S to be the zero operator O on E. Then the 

transformation WO,T is a weighted composition operator(in fact, zero operator) on Lb(E), even if T is 

not continuous. The case T=O gives rise to the similar situation. If these two possibilities are 

excluded, the converse is also valid which is given as under: 

 

Theorem B: Let E is a metrizable locally convex space and S,T be non-zero linear transformations on 

E. Then WS,T is a weighted composition operator on Lb(E) if and only if both S and T are continuous. 

The most important examples of metrizable locally convex spaces often have the structure of normed 

linear spaces. Let E be a normed linear space with norm || . ||E. Then Lb(E) is the usual space of all 

continuous (or bounded) linear transformations on E. It is an algebra with norm: 

        ||T ||L =sup{|| T x ||E : x ∈ Β1}, where Β1 ={x ∈ Ε : || x ||E ≤ 1}. Similarly, if we define   || WS,T  || = 

sup{|| WS,T(A)  ||L : A ∈ Lb(E), || A ||L ≤ 1} 

 

Theorem C: Let E be a normed linear space, and let S and T be non zero linear transformations on E. 

Then WS,T is a weighted composition operator on Lb(E) if and only if both S and T are continuous. In 

this case,          || WS,T  || = || S ||L || T ||L.       We present two examples of operators S and T: one where 

the corresponding transformation WS,T is a operator and in the second, it is not an operator. 

 

Example 1: Let E = l
2 

be the Hilbert space of all square summable sequences of complex numbers. 

For a bounded sequence {an} of complex numbers, define a transformation S on l
2
 as S({xn}) = {an 

xn} for all {xn} in l
2
. Then S ∈ Lb(E) and || S ||L = sup{ | an| : n ∈    N}. Also, let T be the unilateral shift 

operator on E. Then T ∈ Lb(E) and || T ||L = 1. Using Theorem C, it follows that WS,T is a weighted 

composition operator on Lb(E) and || WS,T  || = || S ||L. 

Example2: Let E = C
∞
[0,1] be the linear space of all infinitely differentiable functions f in [0,1] such 

that the n
th

 derivative  f
(n)

 is continuous on [0,1] for all n. Under the supremum norm, E becomes a 

normed linear space but it is not complete. Now define a linear transformation T on E as Tf = f ′ for 
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all f ∈ Ε. Then T is not bounded ([1]) and so this T does not induce a composition operator CT nor a 

weighted composition operator WT,T on Lb(E). 

Compact Weighted Composition Operator 

 

Compactness of weighted composition operators on L
p
-spaces,  H

p
-spaces and on spaces of 

continuous functions has been studied by various authors. For details, we refer to [4]. The aim of this 

paper is to study compact weighted composition operators on Lb(E), when E is a Banach space with 

the norm || . ||. For  a Banach space E, Lb(E) is denoted by B(E) and is a Banach algebra with the norm 

given by  

|| Α ||Β = sup{|| A x || : x ∈ B1}, where Β1 ={x ∈ Ε : || x ||E ≤ 1}. 

For presenting the main result, we require the following two propositions:  

Proposition 3.1: Let E be a Banach space and K be a bounded subset of E satisfying the condition: 

(∗) “For any sequence {xn} in K and ε > 0, there corresponds a subsequence {���
} such that ||  

���
− ���

 ||< ε for all ��� 
, ���  

in the sequence.” Then the closure 
� of K is a compact subset of E. 

Proof: To prove that 
� is compact, we show that every sequence in K has a convergent 

subsequence. Let {xn} be a sequence in K. Using (∗) with ε = 1, take a subsequence {��
(�)

}. 

Inductively, we chose a k
th

 sequence {��
(�)

} from (k-1)
th

 subsequence {��
(���)

} using (∗) with ε =  
�

�
. 

Writing k
th

 term of the k
th

 subsequence {��
(�)

} by xk, the resulting sequence {xk} is a subsequence of 

the original sequence {xn} and is a Cauchy sequence. Since 
� is complete, so {xk} is convergent. 

 

Notation: Let x ∈ E and M be a subset of E. Then the distance from x to M is denoted by d(x, M) and 

is given by  

                            d(x, M) = inf{|| x-y || : y ∈ M}. 

 

Proposition 3.2: Let K be a bounded subset of E satisfying the property: To any ε > 0, there exists a 

finite dimensional subspace M of E such that d(x, M) < ε for all x ∈ M. Then  
� is compact. 

Proof: By Proposition 3.1, it suffices to show that K satisfies the condition (*). Let {xn} be a 

sequence in K and ε > 0 be given. By our assumption, there is a finite dimensional subspace M such 

that d(x, M) < 
ε

�
 for all x ∈ K. For each xn, take an element yn of M with ||  xn − yn  || < 

ε

�
. Since {xn} is 
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bounded,{yn} becomes a bounded sequence in the finite- dimensional space M and so {yn} has a 

convergent subsequence {���
}. This implies that there exists a number io such that for i, j ≥ io, we 

have 

                ||  ���
 − ���

  || <  
ε

�
. Therefore, for i, j ≥ io, we have     || ���

 − ���  || ≤ ||  ���
 − ���    || + ||  

���
 − ���

  || + ||  ���
 − ���

 ||      <  
ε

�
 +  

ε

�
 +  

ε

�
 =  ε. Τhis shows that the subsequence {���  : i ≥ io} 

satisfies the condition (*). Hence our result follows from proposition 3.1. 

                We will now present a characterization of compact weighted composition operators on 

B(E), when E is a Banach space. By B2, we denote the closed unit ball of B(E). 

 

Theorem 3.3: Let S, T be non-zero operators on E. Then WS,T is a compact weighted composition 

operator on B(E) if and only if both S and T are compact. 

Proof: Suppose that S and T are compact. To prove that WS,T is compact, we must show that 

the closure of  WS,T(B2) is  compact. Using Proposition 3.1 with E = B(E) and K = WS,T(B2), we see 

the following statement is to be proved: For any sequence {An} in B2 and ε > 0, there corresponds a 

subsequence {���
} such that    || WS,T ���

 − WS,T ���
 ||B < ε  for all pairs ���

, ���   in the subsequence. 

Take ε1 with       0 < ε1|| S ||B <  
ε

�
 , and put N(x) = {y ∈ E: || y-x || < ε1 } 

for x ∈ T(B1). Since the closure of T(B1) is compact, we can choose finitely many element x1, x2,......xm 

of T(B1) such that   T(B1) ⸦ ⋃ �(��
�
��� ). For each k = 1, 2, 3, ....., m, define a k

th
 sequence {��

(�)
} by 

{��
(�)

} = An xk  for n = 1, 2, ..... Then each sequence {��
(�)

} is bounded, and so by compactness of S, 

we can find a subsequence {ni} of {n} such that m sequences {S ���

(�)
}, {S���

(�)
},......,{S���

(�)
} are all 

convergent. Here we may assume that {ni} satisfies 

||S���

(�)
 - S���

(�)
||  < 

ε

�
 

for all pairs ni, nj and k = 1, 2, 3,.....,m. Now let z ∈ B1 be arbitrary. Then by our choice of x1, 

x2,......,xm, there exists atleast one xk such that T(z)  ∈ N(xk), that is, 

                             || T(z) - xk || < ε1. 

If ni and nj are elements of the above subsequence {ni}, then 

 ||WS,T ( ���  
(�)) - WS,T (�� �

(�))||  

  ≤ || S ���  
T(z) – S ���  

T(z) || 
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 ≤ || S ���  
T(z) – S ���  

(xk) || + || S ���  
(xk) – S ���  

 (xk) || + || S ���  
(xk) – S ���  

T(z) || 

≤ || S ||B || ���  
||B || T(z) - xk || + ||S���

(�)
 - S���

(�)
|| + || S ||B || ���  

||B || xk  - T(z) ||  

< ε1 || S ||B + 
ε

�
  +ε1  || S ||B   <  ε. 

Since z ∈ B1 was arbitrary, we obtain         || WS,T ���  
 – WS,T ���  

||B < ε. 

                For the other way part, suppose WS,T is compact. We first show that S is compact. Let {yn} 

be a sequence in B1 and choose non-zero elements xo and zo of E such that T(zo) = xo. By Hahn-

Banach Theorem, there is a continuous linear functional f of E such that f(xo) = 1 and || f || = 1. For 

any n, define    An : E → E as An(x) = f(x)yn for each x ∈ E. Then clearly {An} is a sequence in B(E) 

and ||An|| ≤ 1, that is, it is a sequence in B2. Since WS,T is compact, there exists a subsequence { ���  
} 

of {An} and A ∈ B(E) such that  || WS,T ���  
 – A||B → 0. 

Also, we have    WS,T( An(zo)) = S ���
T(zo) = S ��� 

(xo)  = S(f(xo)yn) = S(yn) and so   || S ���  
– A(zo) || 

= || WS,T (���  
(zo)) – A(zo) ||      ≤ || WS,T ���  

 – A||B || zo || → 0. 

Thus we find a subsequence { ���  
} such that {����  

} is convergent. Hence S is compact. 

                Finally, we show that T is compact. To see this, we assume on the contrary that T is not 

compact, that is, �(��)�������� is not a compact set. Then, by Proposition 3.2, there exists a δ such 

that 0 < δ ≤ 1 and has the property: 

                For any finite dimensional subspace M, there exits an element x of T(��) such that d(x, M) ≥ 

δ. Fix a non-zero element x1 of T(B1), and choose yo so that S(yo) ≠ 0 and || yo || ≤ δ. Βy Hahn Banach 

Theorem, we find an  operator A1 ∈ B(E) such that A1(x1) = yo and || A1 ||B ≤ δ (≤ 1). 

Νext we construct an operator A2 as follows: 

                If M1 is the subspace spanned by x1, the choice of δ gives an element x2 in T(B1) such that 

d(x2, M1) ≥ δ. Using Hahn-Banach Theorem again, we find a continuous linear functional  f2 on E 

such that   f2(x1) = 0, f2(x2) = 1  and  || f2 ||  ≤  
�

 (!",#$)
. 

Define A2: E → E as A2(x) = f2(x)yo for all x ∈ E. Then clearly A2 ∈ B(E) and satisfies 

A2(x1) = 0, A2(x2) = yo and || A2 ||B ≤ 1. 

Continuing in this way, we obtain a sequence {xn} in T(B1) and a sequence {An}  of operators in B2 

such that  An(xm) = 0 for m = 1, 2,......, n-1 and An(xn) = yo. 

Let zn be an element of B1 with T(zn) = xn. Then for any m, n with m < n, we have 
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||WS,T(Am) - WS,T(An) ||B ≥ ||WS,T( Am(zn)) - WS,T( An(zn)) ||    = || SAmT(zn) – SAnT(zn) ||   

    =  || SAm(xn) – SAn(xn) || 

    = || 0 – S(yo) ||  = || S(yo) || > 0,which implies that {WS,T( An)} cannot have a convergent 

subsequence, while {An} is a bounded sequence. This is contrary to the compactness of WS,T. Thus we 

conclude that T must be compact. 

 

Corollary3.4 Let E be an infinite dimensional Banach space. Then a composition operator CT on 

B(E) is compact if and only if T is a zero operator O on E. Also, a multiplication operator MT on B(E) 

is compact if and only if T = O on E. 

Proof: Let CT(respectively, MT) be a compact composition (respectively, multiplication) 

operator on B(E). Then CT(respectively, MT) can be considered as a weighted composition operator 

WI,T(respectively, WT,I), where I is the identity operator on E. If T is non-zero, then the above 

Theorem 3.3 shows that I is compact. This contradicts the assumption that E is infinite dimensional. 

Hence T must be zero operator on E. The converse part is trivial. 

 

Remark: The compactness of the weighted composition operator WS,T on LB(E) when E is a locally 

convex space will be worthwhile to prove and we are working in this direction. 
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