Compact Weighted Composition Operators on a Space of Operators

Kamaljeet Kour

Department of Mathematics Govt. College for Women Parade Ground, Jammu J&K- India

Abstract: Let L(E) be a locally convex space of all continuous linear transformations from a locally convex space E into itself, which is equipped with the topology of uniform convergence on bounded subsets of E. In this paper, we characterize compact weighted composition operators on these spaces.

Keywords: Locally convex space; topology of uniform convergence on bounded sets; weighted composition operator. 1991 AMS Mathematics Subject Classification: Primary 47B38; Secondary 46A32, 47B48

Introduction

Let *E* be a vector space and *L*(*E*) a vector space of transformations from *E* into itself. Let *T* $\in L(E)$ be such that $TA \in L(E)$ whenever $A \in L(E)$. Here TA(x) = T(Ax) for all $x \in E$. A multiplication operator denoted by M_T on L(E) has the form : $M_T(A) = TA$ for all $A \in L(E)$. Similarly, a composition operator C_T on L(E) has the form : $C_T(A) = AT$ for all $A \in L(E)$. For $S, T \in L(E)$, we have a weighted composition operator $W_{S,T}$ on L(E) given by $W_{S,T}(A) = SAT$ for all $A \in L(E)$. These operators on different function spaces have been the subject matter of various papers in recent years, see for example [4], [5], [6] and the references listed therein. For a non-trivial locally convex space E, let *P* denote the family of all continuous seminorms on *E* and *B* denote the family of all bounded subsets of E. For each $p \in P$ and $K \in B$, we define the seminorm $\| . \|_{p, K}$ on L(E) as $\| . \|_{p, K} = \sup \{p(Ax) : x \in K\}$ for all $A \in L(E)$. Then the family $\{\| . \|_{p, K} : p \in P, K \in B\}$ of seminorms defines a locally convex by $L_b(E)$. The convergence in this topology is the uniform convergence on bounded subsets of *E*. For details about topologies on a space of operators, we refer to Grothendieck [2] and Kothe [3].

Operator On $L_b(E)$

Composition operators, multiplication operators and weighted composition operators on $L_b(E)$ has been characterized by Singh, Singh and Takagi [6]

whereas idempotent and invertible properties of such operators were characterized by Singh, Singh and the author in [5]. The following theorems have been proved in [6].

Theorem A: Let *T* be a linear transformation on *E*. Then C_T is a composition operator on $L_b(E)$ if and only if *T* is continuous on *E*. Also, M_T is a multiplication operator on $L_b(E)$ if and only if *T* is continuous on *E*. Using this result, it follows that if *S* and *T* are continuous linear transformations on *E*, then the associated transformation $W_{S,T}$ (= $M_S C_T$) is a weighted composition operator on $L_b(E)$. The converse statement is not true. For instance, take *S* to be the zero operator *O* on *E*. Then the transformation $W_{O,T}$ is a weighted composition operator(in fact, zero operator) on $L_b(E)$, even if *T* is not continuous. The case T=O gives rise to the similar situation. If these two possibilities are excluded, the converse is also valid which is given as under:

Theorem B: Let *E* is a metrizable locally convex space and *S*, *T* be non-zero linear transformations on *E*. Then $W_{S,T}$ is a weighted composition operator on $L_b(E)$ if and only if both *S* and *T* are continuous. The most important examples of metrizable locally convex spaces often have the structure of normed linear spaces. Let *E* be a normed linear space with norm $|| \cdot ||_E$. Then $L_b(E)$ is the usual space of all continuous (or bounded) linear transformations on *E*. It is an algebra with norm:

 $||T||_L = \sup\{||Tx||_E : x \in B_I\}, \text{ where } B_I = \{x \in E : ||x||_E \le I\}. \text{ Similarly, if we define } ||W_{S,T}|| = \sup\{||W_{S,T}(A)||_L : A \in L_b(E), ||A||_L \le I\}$

Theorem C: Let *E* be a normed linear space, and let *S* and *T* be non zero linear transformations on *E*. Then $W_{S,T}$ is a weighted composition operator on $L_b(E)$ if and only if both *S* and *T* are continuous. In this case, $||W_{S,T}|| = ||S||_L ||T||_L$. We present two examples of operators *S* and *T*: one where the corresponding transformation $W_{S,T}$ is a operator and in the second, it is not an operator.

Example 1: Let $E = l^2$ be the Hilbert space of all square summable sequences of complex numbers. For a bounded sequence $\{a_n\}$ of complex numbers, define a transformation S on l^2 as $S(\{x_n\}) = \{a_n x_n\}$ for all $\{x_n\}$ in l^2 . Then $S \in L_b(E)$ and $|| S ||_L = \sup\{ |a_n| : n \in N \}$. Also, let T be the unilateral shift operator on E. Then $T \in L_b(E)$ and $|| T ||_L = 1$. Using Theorem C, it follows that $W_{S,T}$ is a weighted composition operator on $L_b(E)$ and $|| W_{S,T} || = || S ||_L$.

Example2: Let $E = C^{\infty}[0,1]$ be the linear space of all infinitely differentiable functions f in [0,1] such that the n^{th} derivative $f^{(n)}$ is continuous on [0,1] for all n. Under the supremum norm, E becomes a normed linear space but it is not complete. Now define a linear transformation T on E as Tf = f' for

all $f \in E$. Then *T* is not bounded ([1]) and so this *T* does not induce a composition operator C_T nor a weighted composition operator $W_{T,T}$ on $L_b(E)$.

Compact Weighted Composition Operator

Compactness of weighted composition operators on L^p -spaces, H^p -spaces and on spaces of continuous functions has been studied by various authors. For details, we refer to [4]. The aim of this paper is to study compact weighted composition operators on $L_b(E)$, when E is a Banach space with the norm $|| \cdot ||$. For a Banach space E, $L_b(E)$ is denoted by B(E) and is a Banach algebra with the norm given by

 $||A||_{B} = \sup\{||Ax|| : x \in B_{I}\}, \text{ where } B_{I} = \{x \in E : ||x||_{E} \le I\}.$

For presenting the main result, we require the following two propositions:

Proposition 3.1: Let *E* be a Banach space and *K* be a bounded subset of *E* satisfying the condition:

(*) "For any sequence $\{x_n\}$ in K and $\varepsilon > 0$, there corresponds a subsequence $\{x_{n_i}\}$ such that $|| x_{n_i} - x_{n_j} || < \varepsilon$ for all x_{n_i}, x_{n_j} in the sequence." Then the closure \overline{K} of K is a compact subset of E.

Proof: To prove that \overline{K} is compact, we show that every sequence in K has a convergent subsequence. Let $\{x_n\}$ be a sequence in K. Using (*) with $\varepsilon = I$, take a subsequence $\{x_m^{(1)}\}$. Inductively, we chose a k^{th} sequence $\{x_m^{(k)}\}$ from $(k-1)^{\text{th}}$ subsequence $\{x_n^{(k-1)}\}$ using (*) with $\varepsilon = \frac{1}{k}$. Writing k^{th} term of the k^{th} subsequence $\{x_m^{(k)}\}$ by x_k the resulting sequence $\{x_k\}$ is a subsequence of the original sequence $\{x_n\}$ and is a Cauchy sequence. Since \overline{K} is complete, so $\{x_k\}$ is convergent.

Notation: Let $x \in E$ and M be a subset of E. Then the distance from x to M is denoted by d(x, M) and is given by

$$d(x, M) = \inf\{||x-y|| : y \in M\}.$$

Proposition 3.2: Let *K* be a bounded subset of *E* satisfying the property: To any $\varepsilon > 0$, there exists a finite dimensional subspace *M* of *E* such that $d(x, M) < \varepsilon$ for all $x \in M$. Then \overline{K} is compact.

Proof: By Proposition 3.1, it suffices to show that *K* satisfies the condition (*). Let $\{x_n\}$ be a sequence in *K* and $\varepsilon > 0$ be given. By our assumption, there is a finite dimensional subspace *M* such that $d(x, M) < \frac{\varepsilon}{3}$ for all $x \in K$. For each x_n , take an element y_n of *M* with $|| x_n - y_n || < \frac{\varepsilon}{3}$. Since $\{x_n\}$ is

bounded, $\{y_n\}$ becomes a bounded sequence in the finite- dimensional space M and so $\{y_n\}$ has a convergent subsequence $\{y_{n_i}\}$. This implies that there exists a number i_o such that for $i, j \ge i_o$, we have

 $\| y_{n_i} - y_{n_j} \| < \frac{\varepsilon}{3}.$ Therefore, for $i, j \ge i_o$, we have $\| x_{n_i} - x_{n_j} \| \le \| x_{n_i} - y_{n_i} \| + \|$ $y_{n_i} - y_{n_j} \| + \| y_{n_j} - x_{n_j} \| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$ This shows that the subsequence $\{x_{n_i} : i \ge i_o\}$ satisfies the condition (*). Hence our result follows from proposition 3.1.

We will now present a characterization of compact weighted composition operators on B(E), when *E* is a Banach space. By B_2 , we denote the closed unit ball of B(E).

Theorem 3.3: Let *S*, *T* be non-zero operators on *E*. Then $W_{S,T}$ is a compact weighted composition operator on *B*(*E*) if and only if both *S* and *T* are compact.

Proof: Suppose that *S* and *T* are compact. To prove that $W_{S,T}$ is compact, we must show that the closure of $W_{S,T}(B_2)$ is compact. Using Proposition 3.1 with E = B(E) and $K = W_{S,T}(B_2)$, we see the following statement is to be proved: For any sequence $\{A_n\}$ in B_2 and $\varepsilon > 0$, there corresponds a subsequence $\{A_{n_i}\}$ such that $\| W_{S,T} A_{n_i} - W_{S,T} A_{n_j} \|_B < \varepsilon$ for all pairs A_{n_i}, A_{n_j} in the subsequence. Take ε_l with $0 < \varepsilon_l \| S \|_B < \frac{\varepsilon}{3}$, and put $N(x) = \{y \in E : \| y - x \| < \varepsilon_l \}$

for $x \in T(B_l)$. Since the closure of $T(B_l)$ is compact, we can choose finitely many element $x_{l_i} x_{2,...,x_m}$ of $T(B_l)$ such that $T(B_l) \Box \bigcup_{k=1}^m N(x_k)$. For each k = l, 2, 3, ..., m, define a k^{th} sequence $\{y_n^{(k)}\}$ by $\{y_n^{(k)}\} = A_n x_k$ for n = l, 2, Then each sequence $\{y_n^{(k)}\}$ is bounded, and so by compactness of S, we can find a subsequence $\{n_i\}$ of $\{n\}$ such that m sequences $\{S y_{n_i}^{(1)}\}, \{Sy_{n_i}^{(2)}\}, ..., \{Sy_{n_i}^{(m)}\}$ are all convergent. Here we may assume that $\{n_i\}$ satisfies

$$||Sy_{n_i}^{(k)} - Sy_{n_j}^{(k)}|| < \frac{\varepsilon}{3}$$

for all pairs n_i , n_j and $k = 1, 2, 3, \dots, m$. Now let $z \in B_1$ be arbitrary. Then by our choice of x_1 , x_2, \dots, x_m , there exists at least one x_k such that $T(z) \in N(x_k)$, that is,

$$|| T(z) - x_k || < \varepsilon_l$$

If n_i and n_j are elements of the above subsequence $\{n_i\}$, then

 $||W_{S,T}(A_{n_i}(z)) - W_{S,T}(A_{n_j}(z))||$ $\leq ||SA_{n_i}T(z) - SA_{n_j}T(z)||$

Vol. (1) No. (1) March 2018

JK Research Journal in Mathematics and Computer Sciences

 $\leq \| S A_{n_{i}} T(z) - S A_{n_{i}} (x_{k}) \| + \| S A_{n_{i}} (x_{k}) - S A_{n_{j}} (x_{k}) \| + \| S A_{n_{j}} (x_{k}) - S A_{n_{j}} T(z) \|$ $\leq \| S \|_{B} \| A_{n_{i}} \|_{B} \| T(z) - x_{k} \| + \| S y_{n_{i}}^{(k)} - S y_{n_{j}}^{(k)} \| + \| S \|_{B} \| A_{n_{j}} \|_{B} \| x_{k} - T(z) \|$ $< \varepsilon_{I} \| S \|_{B} + \frac{\varepsilon}{3} + \varepsilon_{I} \| S \|_{B} < \varepsilon.$ Since $z \in B_{I}$ was arbitrary, we obtain $\| W_{S,T} A_{n_{i}} - W_{S,T} A_{n_{i}} \|_{B} < \varepsilon.$

For the other way part, suppose $W_{S,T}$ is compact. We first show that *S* is compact. Let $\{y_n\}$ be a sequence in B_1 and choose non-zero elements x_o and z_o of *E* such that $T(z_o) = x_o$. By Hahn-Banach Theorem, there is a continuous linear functional *f* of *E* such that $f(x_o) = 1$ and ||f|| = 1. For any *n*, define $A_n : E \to E$ as $A_n(x) = f(x)y_n$ for each $x \in E$. Then clearly $\{A_n\}$ is a sequence in B(E) and $||A_n|| \le 1$, that is, it is a sequence in B_2 . Since $W_{S,T}$ is compact, there exists a subsequence $\{A_{n_i}\}$ of $\{A_n\}$ and $A \in B(E)$ such that $||W_{S,T}A_{n_i} - A||_B \to 0$.

Also, we have $W_{S,T}(A_n(z_o)) = S A_{n_o} T(z_o) = S A_{n_o} (x_o) = S(f(x_o)y_n) = S(y_n)$ and so $||S y_{n_i} - A(z_o)||$ = $||W_{S,T}(A_{n_i}(z_o)) - A(z_o)|| \le ||W_{S,T} A_{n_i} - A||_B ||z_o|| \to 0.$

Thus we find a subsequence $\{y_{n_i}\}$ such that $\{Sy_{n_i}\}$ is convergent. Hence S is compact.

Finally, we show that T is compact. To see this, we assume on the contrary that T is not compact, that is, $\overline{T(B_1)}$ is not a compact set. Then, by Proposition 3.2, there exists a δ such that $0 < \delta \le 1$ and has the property:

For any finite dimensional subspace M, there exits an element x of $T(B_1)$ such that $d(x, M) \ge \delta$. Fix a non-zero element x_1 of $T(B_1)$, and choose y_o so that $S(y_o) \ne 0$ and $||y_o|| \le \delta$. By Hahn Banach Theorem, we find an operator $A_1 \in B(E)$ such that $A_1(x_1) = y_o$ and $||A_1||_B \le \delta \le 1$. Next we construct an operator A_2 as follows:

If M_1 is the subspace spanned by x_1 , the choice of δ gives an element x_2 in $T(B_1)$ such that $d(x_2, M_1) \ge \delta$. Using Hahn-Banach Theorem again, we find a continuous linear functional f_2 on E such that $f_2(x_1) = 0, f_2(x_2) = 1$ and $||f_2|| \le \frac{1}{d(x_2, M_1)}$.

Define $A_2: E \to E$ as $A_2(x) = f_2(x)y_o$ for all $x \in E$. Then clearly $A_2 \in B(E)$ and satisfies

$$A_2(x_1) = 0, A_2(x_2) = y_o \text{ and } ||A_2||_B \le 1.$$

Continuing in this way, we obtain a sequence $\{x_n\}$ in $T(B_1)$ and a sequence $\{A_n\}$ of operators in B_2 such that $A_n(x_m) = 0$ for m = 1, 2, ..., n-1 and $A_n(x_n) = y_0$.

Let z_n be an element of B_1 with $T(z_n) = x_n$. Then for any *m*, *n* with m < n, we have

Vol. (1) No. (1) March 2018

JK Research Journal in Mathematics and Computer Sciences

$$||W_{S,T}(A_m) - W_{S,T}(A_n)||_B \ge ||W_{S,T}(A_m(z_n)) - W_{S,T}(A_n(z_n))|| = ||SA_mT(z_n) - SA_nT(z_n)||$$

= ||SA_m(x_n) - SA_n(x_n)||

= $|| 0 - S(y_o) || = || S(y_o) || > 0$, which implies that $\{W_{S,T}(A_n)\}$ cannot have a convergent subsequence, while $\{A_n\}$ is a bounded sequence. This is contrary to the compactness of $W_{S,T}$. Thus we conclude that *T* must be compact.

Corollary3.4 Let *E* be an infinite dimensional Banach space. Then a composition operator C_T on B(E) is compact if and only if *T* is a zero operator *O* on *E*. Also, a multiplication operator M_T on B(E) is compact if and only if T = O on *E*.

Proof: Let C_T (respectively, M_T) be a compact composition (respectively, multiplication) operator on B(E). Then C_T (respectively, M_T) can be considered as a weighted composition operator $W_{I,T}$ (respectively, $W_{T,I}$), where I is the identity operator on E. If T is non-zero, then the above Theorem 3.3 shows that I is compact. This contradicts the assumption that E is infinite dimensional. Hence T must be zero operator on E. The converse part is trivial.

Remark: The compactness of the weighted composition operator $W_{S,T}$ on $L_B(E)$ when E is a locally convex space will be worthwhile to prove and we are working in this direction.

References

- [1] J.B.Conway (1990), A course in Functional Analysis, 2nd Edition, Springer-Verlag, New York.
- [2] A. Grothendieck (1975), Topological vector spaces, Gorden and Breach Science Publishers, New York.
- [3] G. Kothe (1979), Topological vector spaces II, Springer-Verlag, New York.
- [4] R.K.Singh, J.S.Manhas (1993), Composition operators on function spaces, North-Holland Math.Studies 179, Amsterdam.
- [5] R.K.Singh, B.Singh, K.Kour (1995), Idempotent Composition and multiplication operators on a space of operators, Indian J. Math., Vol 37, 257-262.
- [6] B.Singh, R.K.Singh, H.Takagi (1996), Weighted composition operators on a space of operators, J India Math.Soc., Vol.62, 97-104.
- [7] A E Taylor and D.C.Lay (1980), Introduction to Functional Analysis, 2nd Edition, Wiley, New York.