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Abstract: The properties of symmetric nuclear matter (SNM) and pure neutron matter (PNM) are of great importance 

in the development of nuclear many-body problem with application to nuclear as well as astrophysics. This paper 

reports microscopic calculations of the equation of state of Symmetric Nuclear Matter and pure Neutron Matter using 

Brueckner-Hartee-Fock (BHF) approach. Since the basic input in BHF is the nucleon-nucleon (NN) interaction hence 

we have used the most recent high quality NN potentials: Argonne v18, Reid 93 and Nijm II along with and without 

two types of three-body forces (TBFs): the Urbana IX model and the phenomenological density dependent three 

nucleon interaction (TNI) model of Lagris and Pandharipande [Nucl.Phys. A 359,349 (1981)]. The use of modern and 

recent available internucleon interactions coupled with the inclusion of TBFs helps us to achieve the saturation 

properties of SNM and PNM  and tune them to be in agreement with the empirical values therefore taking care of the 

shortcomings of two body hard core potentials used earlier. Since the study pure neutron matter is important for the 

study of neutron stars, we have investigated the density dependence of PNM and the effect of TBFs on PNM.  
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Introduction 

Equation of state (EOS) of nuclear matter 

is of great importance in nuclear physics for 

theoretical understanding of heavy ion collisions, 

supernova explosions and structure of neutron 

stars. One of the long standing problems in 

nuclear many-body theory is to obtain the nuclear 

matter binding energy and saturation properties 

in conformity with empirical estimates, starting 

from a realist ic nucleon-nucleon (NN) 

interaction. Microscopic nucleon optical potential 

is directly related through folding model to the 

mean field in nuclear matter and hence the EOS. 

In view of this Non-relativistic Brueckner-

Hartree-Fock (BHF) theory as well as variational 

techniques have been extensively used to 

investigate equation of state (EOS) of symmetric 

and pure neutron matter (Jeukenne, et al,1976; 

Baldo et al, 1988, 1989, 1990; Zuo, 1998, 1999; 

B o m b a c i  a n d  L o m b a r d o ,  1 9 9 1 ) . 
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These calculations are microscopic in the sense 

that the only input used is the realistic two nucleon 

potentials. To calculate the nucleon-nucleus 

optical potential in BHF one additionally requires 

point proton and neutron density distribution in the 

target. An appropriate EOS must predict the 

correct saturation point for symmetric nuclear 

matter (SNM); give symmetry energy compatible 

with phenomenology and values of 

compressibility in agreement with empirical 

estimates. In order to calculate the EOS of 

symmetric zero temperature nuclear matter and 

the microscopic optical potential we have used the 

Hamiltonian of the form: 

2
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2
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            (1)                                                

where vij is a two nucleon potential and Vijk is 

a three nucleon interaction. In this paper we 

present our calculations based on the self-

consistent Brueckner-Hartee-Fock (BHF)
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approximation for the calculation of Binding 

energy of Symmetric nuclear matter (SNM) 

and Pure neutron matter (PNM) as a function 

of density or Fermi momemtum. 

It is well known that no two-body 

potential is able to reproduce the saturation 

property of the symmetric nuclear matter using 

non-relativistic variational (Wiringa et al, 

1988) or BHF (Baldo et al., 1997) approach. 

Hence it has become necessary to use three 

body forces. Further the two nucleon potentials 

under bind the 3He and 3H (Brandenberg et al, 

1961; Kummel et al, 1978). It has been 

established that the Bethe-Brueckner-

Goldstone (Baldo et al., 1997) expansion 

converges at the two-hole line level of 

approximation if a continuous choice for the 

self-consistent single particle potential is 

adopted for the intermediate states in the BHF 

approach. Hence there is no hope that the 

higher order terms in the Goldstone expansion 

with only two-body force would be able to 

reproduce the saturation properties of SNM. 

Hence it has become necessary to use three 

body forces. In order to avoid the complication 

of solving Bethe-Fadeev equation (Faddeev et 

al, 1961), averaged three nucleon interaction 

((Friedman and Pandharipande, 1981; Pudliner 

et al, 1995) has recently been used to obtain the 

correct saturation property of SNM by 

adjusting few parameters. 

In this paper we first describe our 

results concerning nuclear matter with only 

two-body and then with the additional use of 

two types of three-body forces. Since the basic 

input in BHF (Day, 1967) is the nucleon -

nucleon (NN) interaction hence we have used 

the most recent high quality NN potentials: 

Argonne v18 (Wiringa et al, 1995) (AV-18), 

Reid 93 and NijmII (Stoks et al, 1994). The 

saturation points obtained using only two body 

NN interactions in non relativistic BHF are 

found to lie within a narrow band, called 

Coester band (Coester et al, 1970). In order to 

improve upon the situation we have to include 

three body forces in BHF calculations. We 

have used two models of TBF in our 

calculations. The Urbana VII (UVII) three 

nucleon potential (Baldo and Ferreira, 1999; 

Carlson et al, 1983) and the phenomenological 

density dependent three nucleon interaction 

(TNI) model of Lagris, Friedman and 

Pandharipande (Kummel, 1978; Faddeev, 

(1961) in our effective interaction code to 

calculate EOS of SNM and PNM. Study of 

Neutron matter is important for estimating 

neutron star sizes and hence we have made 

BHF calculations for pure neutron matter. 

Method of calculation 

The microscopic Brueckner-Bethe-

Goldstone description of nuclear matter is 

based on a linked cluster expansion of the 

energy per nucleon of the nuclear matter (Day, 

1967). The basic ingredient is the Brueckner 

reaction matrix G, which is the solution of the 

Bethe Goldstone equation, 

[ ; ] [ ; ]
( ) ( )

a b a b

a b

k k k k
G V G

e k e k i
   

 
 

  
                          

                                                             (2) 

where V is the realistic nucleon–

nucleon interaction, ρ is the nuclear matter 

density, and w the starting energy. The single 

particle energy is  

 

2

( ) ( ; ) ( ; )
2

k
e k e k U k

m
   

              (3)                                 

and the propagation of the intermediate 

nucleon pairs is constrained above the Fermi 

momentum kF . The BHF approximation for 

the single-particle potential U(k; ρ) using the 

continuous choice prescription is: 

( ; ) Re | | ( ) ( ); ] |
Fk k a

U k kk G e k e k kk 


   
                                                           

             (4) 

where the subscript a refers to 

antisymmetrization of the matrix elements. 

Because of U(k; ρ) in Eq. (3), Eqs. (2–4) 

constitute a set of coupled equations that needs 

to be solved self-consistently. In the BHF 
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approximation the average energy per nucleon 

in nuclear matter is given by: 

                                         
23 1

Re | | ( ) ( ); ] |
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
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(5) 

In the following section we present a 

brief account of the NN interactions used in our 

calculations. 

Nucleon-Nucleon (NN) Potential Models 

In this section we briefly describe the 

mathematical structure of the NN interactions: 

Argonne v18 (Wiringa et al, 1995), Reid93 and 

Nijm II (Stoks et al, 1994), which have been 

employed in the present study for calculating  

the equation of state of SNM and PNM.  

Argonne v18 inter-nucleon potential 

Traditionally, nucleon-nucleon (NN) 

potentials are constructed by fitting np data for 

T=0 states and either np or pp data for T=1 

states. Examples of potentials fit to np in all 

states are Argonne v14 (Wiringa et al, 1984), 

Urbana v14 (Lagris and Pandharipande, 1981), 

and most of the Bonn potentials (Machleidt et 

al, 1987). Unfortunately, potential models 

which fit only the np data often give a poor 

description of pp data (Stokes and Swart, 1993; 

Li et al, 2006), even after applying the 

necessary Coulomb correction. On the other 

hand potentials fit to pp data in T=1 states give 

only mediocre description of np data. 

Fundamentally, this problem is due to charge-

independence breaking in the strong 

interaction.  

Argonne v18 (Wiringa et al, 1995) is a 

high quality, non relativistic, local nucleon-

nucleon interaction with explicit charge 

dependence and charge asymmetry. The model 

has a charge independent part with 14 operator 

components, three additional charge-dependent 

and one charge-asymmetric operator have also 

been added. This NN interaction gives an 

excellent fit to both pp and np scattering data, 

as well as to low-energy nn scattering and 

deuteron binding energy. Compared to older 

Urbana 14 (Lagris and Pandharipande, 1981 ) 

and Argonne v14 (Wiringa et al, 1984) 

potentials, this potential has a weaker tensor 

force, which will generally lead to more 

binding in light nuclei and less rapid saturation 

in nuclear matter. This is counteracted by the 

weaker attraction in T=1 because of the mix of 

pp and np components Av 18 gives a χ2 per 

datum of 1.09 for pp and np data in the energy 

range 0-350MeV. The  Argonne V18  potential 

is written as a sum of an electromagnetic (EM) 

part, a one-pion exchange (OPE) part, and 

intermediate- and short-range 

phenomenological part. 

 

( ) ( ) ( ) ( )EM Rv NN v NN v NN v NN     (6)                                                                                            

The interaction potential can be 

projected in the operator format with 18 terms:     
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 

                                                                 

The first 14 components mentioned 

above are charge independent and are denoted 

by abbreviations: 

 

, , , , , , , , 2, 2 , 2 , 2 , 2 2c t t ls ls l l l l ls and ls          
 

The four additional operators break 

charge independence and are given by: 

       

 
15,18 , . , ( . ) , , ( )p

ij ij i j i j ij ij ij zi zjO T T S T       
 

     
3 .zi zj i jTij     

 is the isotensor operator, 

defined analogous to the Sij operator. The 

terms are abbreviated as T, σT, T and τz.  The 

T, σT and  tT operators are charge dependent 

and  τz is charge asymmetric. 



 

 

JK Knowledge Initiative               2017; 1(2): 66  

 

Reid 93 and Nijm II inter-nucleon potentials 

Reid 93 and Nijm II (Stoks et al, 1994) 

are regularized, updated and purely local 

versions of old Nijm78 and Reid68 potentials 

respectively. Reid93 is an updated high quality 

and a regularized version of the old Reid 

potential, where the singularities have been 

removed via the inclusion of a dipole form 

factor. With this choice, the tensor potential 

now also vanishes at the origin, as it should. An 

important feature of these potential models is 

that in the one-pion-exchange (OPE) part of the 

potential, there is an explicit distinction 

between the neutral-pion and charged-pion 

exchange. The pion masses used are mπ0 

=134.9739 MeV and mπ± = 139.5675 MeV. 

Almost all other potentials in the literature use 

mean pion mass. In these other models the 

isovector np phase parameters are larger in 

magnitude than the corresponding pp phase 

parameters. 

Results and discussion 

BHF results for SNM (only two-body 

forces) 

In this section we present our results for 

binding energy of symmetric nuclear matter in 

the non relativistic BHF approach with the 

three modern NN interactions: Argonne v18, 

Reid93 and NijmII inter-nucleon interactions. 

Fig 1 shows our BHF results of the EOS for 

SNM using only 2-body NN interaction. The 

figure reveals that, with only two-body 

interaction potentials the Hamada Johnston 

underestimates, whereas AV18, UV14, AV14, 

Reid93 and NIJM overestimates the nuclear 

binding energy per nucleon at higher saturation 

densities. Empirical saturation point (Day, 

1996) (ρ=0.17±0.01 fm-3, kF=1.35±0.05fm-1, 

E0/A = -16±1MeV) of nuclear matter lies 

inside the rectangular box shown in the figure. 

We observe from the figure that the 

energy per nucleon first decreases with 

increasing density ρ until it reaches the 

minimum (saturation) then it increases with 

increasing density ρ as it should. Our detailed 

results concerning saturation property are given 

in Table I. We note that the lowest order 

Brueckner theory using Argonne v18 

interaction gives rise to a nuclear matter which 

saturates at ρ=0.22 fm-3 (i.e kF =1.50fm-1) 

with E/A= -17.013MeV.Our results using 

Argonne v18 are closer to empirical values as 

compared with those using Urbana v14 

softcore potential (Lagris and Pandharipande, 

1981)  and Hamada-Johnston hardcore 

potential (Hamada and Johnston, 1962). Our 

results are also in better agreement as 

compared with those of Li et. al, (2006), 

Vidana and Constanca, (2009) and Hassaneen 

et al (2011).Use of Reid93 in BHF leads to 

ρ=0.27 fm-3 (i.e kF =1.60fm-1) with E/A= -

18.43MeV. Nijm II results in =0.27 fm-3 (i.e 

kF =1.60fm-1) with E/A= -18.78MeV. Our 

results using both  Reid 93 and NijmII NN 

interactions are again in closer agreement with 

the empirical values as compared to those 

deduced by Li et al (2006), Vidana and 

Constanca (2009) and Hassaneen et al (2011). 

All the results using three different two- 

body NN interactions in BHF give rise to a 

saturation at higher density and an over bound 

nuclear matter. Thus, with only two body  

forces, the nonrelativistic BHF fails to obtain 

either the magnitude or the density near the 

empirical estimates of the saturation property. 

The equation of state (EOS) can be 

characterized in the thermodynamical context 

by the   incompressibility coefficient, K, which 

is directly related to the curvature of the EOS. 

The incompressibility K can be easily 

calculated from the equation: 

2
2

2

( )
9 AE

K








 ; 0 
           (8)                      

 The incompressibility K can be used to 

understand the stiffness of EOS. The empirical 

value of the incompressibility of symmetric 

nuclear matter at its saturation density ρ0 is 

estimated to be 210±30MeV (Haensel et al, 

2007). We have calculated the 

incompressibility at the saturation points for all 

three interactions: Argonne V18, Reid93 and 

Nijm II NN interactions. Our results are given 



 

 

JK Knowledge Initiative               2017; 1(2): 67  

 

in Table I. We note that our results for K are in 

fair agreement with the empirical value from 

all the three potentials used here. 

A nucleon in nuclear medium behaves 

like a quasi-particle characterized by the 

effective interaction and its effective mass.The 

effective mass describes the momentum 

dependence of the single particle potential in 

the nuclear medium. The effective mass m* 

can evaluated from the slope of U(k) at Fermi 

momentum (Lejeune et al, 1986). 

1

2

*
1

Fk k

m m dU

m k dk





 
  
 

                 (9) 

The phenomenological value of 

*m

m 0.7 

(Jeukenne, 1976). 

Our BHF results for the effective mass 

are presented in Table I. We note that our 

results using all the three above mentioned 

potentials are very close to the 

phenomenological value.  

Three Body Forces (TBF) 

Our results show that non relativistic 

calculations with only two body interactions 

fail to reproduce the correct saturation 

properties of symmetric nuclear matter, in 

conformity with a large number of earlier 

calculations (Wiringa et al, 1988; Baldo et al, 

1997). Further two body potentials under bind 

3H and 4He. It is generally accepted that in 

order to overcome this deficiency, one needs to 

introduce three body forces(TBF) in the NN 

interactions. Unfortunately, it seems not 

possible to reproduce the experimental binding 

energies of light nuclei along with correct 

saturation property accurately with a simple set 

of TBF. A phenomenological model for nuclear 

TBF has been introduced by the Urbana group 

(Baldo and Ferreira, 1999; Carlson et al, 1983) 

and an another density dependent three nucleon 

interaction(TNI) model has been introduced by 

Lagris, Friedman and Pandharipande 

(Friedman and Pandharipande, 1981; (Lagris 

and Pandharipande, 1981).These models are 

briefly described below. 

UrbanaVII (UVII) model 

The UVIX three nucleon potential has a 

long range attractive two pion exchange part 

and an  intermediate range repulsive part.                                                     

              
R

ijkijkijk VVV  2

                (10) 

The two pion exchange term V
2

ijk  is 

attractive and is a cyclic sum over the nucleon 

indices i, j, k of products of commutator and 

anticommutator terms. 

2 ({ , }{ . , , }

1
[ , ][ . , . ]}

4

ijk ij jk i j j k

cyc

ij jk i j j k

V A X X

X X

    

   

 

 (11)              

 

2 2( ) ( )R

ijk ij ik

cyc

V U T r T r 
                     (12) 

The detailed expressions for the 

effective two body interactions are given by 

Baldo and Ferreira (1999).  

Three Nucleon Interaction (TNI) 

As shown by Lagaris and 

Pandharipande (1981), realistic two-nucleon 

interaction seem to overbind nuclear matter 

very significantly at kF >1.5 fm-1, whereas at 

low kF <1.3 fm-1 nuclear matter is an 

underbound, this strongly suggest the need for 

more attraction at low densities and higher 

repulsion at high densities. Lagris and 

Pandharipande (1981) have taken a 

phenomenological point of view, and add 

contribution of TNI to the Urbana v14 (Lagris 

and Pandharipande, 1981) model to get the 

correct E (kF) around kF=1.33 fm-1. 

The Urbana v14 plus TNI model 
approximates the effect of Vijk by adding two 
density dependent terms to the Urbana v14 
two-body potential: a three Nucleon repulsion 
(TNR) term and a three nucleon attractive term. 
The TNR term is taken as the product of an 
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exponential of the density i.e. exp ( 1 
) with 

the intermediate range part of the potential. The 
primary effect if this term is the reduction of 
the intermediate range attraction of the two 
nucleon potential with three-body interactions 

effectively contributing
P

Iv 1 . 

The attractive Vijk interaction is not 
treated microscopically by FP (Lagris and 
Pandharipande, 1981). They assume that its 
contribution to the nuclear matter has the form 

2 2

2 3exp( )(3 2 )TNA       
          (13) 

where β  = (N – Z) /A,  N and Z are 
numbers of neutrons and protons. 

We follow Friedman and 
Pandharipande (1981) and calculate E (kF, 
Av18+TNR) with the interaction using BHF 
method, and add the TNA contribution to 
obtain the nuclear matter energy. 

The effect of the attractive Vijk on the 
wave function is also neglected by FP. The 

values of 1 , 2 and 3  used by FP (Lagris and 
Pandharipande, 1981) are 0.15 fm-3,-600 MeV 
fm6 and 13.6 fm3 respectively. 

BHF results for SNM (two plus three body 

force) 

The equation of state of symmetric 
nuclear matter has been investigated within 
Brueckner-Hartee-Fock approach adopting the 
charge-dependent Argonne V18 plus Urbana 
VII model and phenomenological density 
dependent three nucleon interaction model 
(TNI) of Lagris, Friedman and Pandharipande 
(1981). 

To incorporate the Urbana VII model in 
Brueckner scheme we followed the method 
proposed by Lejeune et al, (1986) to reduce the 
TBF to an effective two-body force by 
averaging over the spin, isospin of the third 
particle (j) and folding over the coordinates rj 
with the product of the two-body correlation 
functions; (1-gij)2  and (1-gjk)2. These 
correlation functions express the probability of 

finding the jth particle at a distance rij,rik from 
the ith and kth particle respectively. g(r) is the 
two body defect function obtained in BHF 
calculations..  

Our results for binding energy of 
symmetric nuclear matter obtained after 
including both UVII and TNI models are 
presented in Fig. 1(a). We observe that the 
introduction of UVII three body model in 
AV18 significantly improves the agreement 
between our results and the empirical value of 
the saturation of  symmetric matter. We notice 
that symmetric matter with UVII three body 
force saturates at ρ=0.185fm-3, kF=1.4fm-1 
and E/A= -15.38MeV a result close to the 
empirical value (Day, 1996). We note that the 
symmetric nuclear matter with AV18 plus TNI 
saturates at ρ=0.158, E/A= -16.50MeV. We 
conclude that the inclusion of three body forces 
in the NN interactions brings the saturation 
point closer the empirical value. 

In Fig. 2 we show different 
components; VS, VT and VR of the averaged 
BHF three body force potential in symmetric 
matter kF =1.4fm-1. The final form of the 
effective two-body force is given in equation 
(11).We find that A= -0.0333 and U= 0.00038 
give the appropriate saturation point.  Our 
results are very close to those derived by Zhou 
et al, (2004). 

Pure Neutron Matter 

Pure neutron matter (PNM)  is defined 
as an idealized infinite, homogeneous system 
of neutrons. At a given density the properties of 
such a system, treated as a gas of interacting 
fermions at T= 00K, are determined by the 
neutron-neutron interaction.  

To calculate the EOS of neutron matter 
we follow the procedure given by Østgaard. 
1970), and remove all  T = 0 interactions, and 
also T=1, T3= 0 interaction. The Fermi 
momentum kF is related to the density ρ of 
neutron matter: 

             

3

23

Fk





                             (14) 
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Table 1:  Saturation properties of Nuclear Matter obtained from different potentials. 

 0 1( )
F

fmk


 

3

0( )fm 

 

/ ( )E A MeV

 

( )symE MeV

 

( )K MeV

 

*m
m  

( )L MeV

 

Empirical Values 1.35±0.05 0.17±0.01 16±1 30.5±3 210±30 0.7 52.5±20 

Av18 1.50 0.228 17.013 33.2 206.024 0.68 53.34 

Av18+UVII 1.40 0.185 15.38 30.93 244.3   

Av18+TNI 1.33 0.158 16.50     

Reid 93 1.60 0.28 18.43 35.39 205.27 0.67 61.31 

NijmII  1.60 0.28 18.78 34.32 210.73 0.67 64.72 

Lagris and 

Pandharipande 

(1981) 

- 0.259 17.30 29.9 - - - 

Stokes and Swart 

(1993) 
- 0.24 17.30 35.8 213.6  63.1 

Li et al, (2006) 1.627  11.29 20.11 189.51 189.5  

 

We have calculated energy per nucleon 

of pure neutron matter E (ρ) as a function of 

density in first orders Brueckner theory using 

Argonne V18, Reid93 and Nijm II soft-core 

potentials. We have also studied the effect of 

introducing three body force of Urbana UVII 

type with the two-body Argonne V18 potential 

on PNM. 

In Fig.3 we show the results for energy 

per particle EA (E/A) with density (ρ) for pure 

neutron matter using Argonne V18. We have 

also compared our results with those of Zhou et 

al, (2004) in the same figure. 

We observe from the figures that the 

pure nuclear matter EOS is unbound with  

energy per nucleon rising approximately 

monotonically with increasing density or Fermi 

momentum, which is in agreement with most 

of the many-body calculations (Arntsen and 

Østgaard. 1984). We also observe that our 

results are in a reasonable agreement with those 

of Arntsen and Østgaard. (1984) for Argonne 

V18. 

To study the effect of inclusion of three 

body force in the NN interaction we 

incorporate Urbana VII (Baldo and Ferreira, 

1999; Carlson et al, 1983) in Argonne V18 and 

calculate the energy of pure neutron matter.  

Fig. 4 shows energy of PNM with and 

without three body force. We observe that the  

inclusion of three body forces stiffens the 

equation of state as is expected (Baldo and 

Ferreira, 1999).    

The pressure P(ρ) and energy density 

ε(ρ) of the pure neutron matter are obtained 

from E(ρ) ,where E(ρ) is the energy per 

nucleon, ρ is the number density (Wiringa et al, 

1988):  

2( ) ( ( ) )NE M C    
                       (15)                                       

2 ( )
( )

E
P


 






                        (16) 

Velocity of sound in neutron matter (in 

units of c) is given by: 

( )
( )

P
S









                                      (17) 

Our results for   ε (ρ), P (ρ) and s(ε) 

using Argonne V18 are presented in Fig. 5. Our 

results are in close agreement with Wiringa et 

al, (1988) using Urbana v14. 

Symmetry Energy  

The neutron matter EOS combined with 

that of symmetric nuclear matter provides us 

with information on the isospin effects (Zuo et 

al, 1997) in particular on the symmetry energy 

(Esym). A number of studies had been carried 

out by to determine the exact value of  Esym 

(ρ0) and its density slope L at the saturation. 

The empirical valueof Esym(ρ0) is 
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Fig 1.  Energy per nucleon as a function of   

density for SNM by using only 2-body force 
Fig 1(a) Energy per nucleon as a function 

of density with three body force 

Fig 2. Components of effective two-body 

potential after taking the average over the 

third nucleon in UVII model [20,21] of 

three body force. 

Fig 3. Energy per nucleon for Pure 

Neutron matter as a function of density 

using Argonne  V18. .Red line shows the 

results of Ref[33]. 

Fig.4. Energy per nucleon for Pure 

Neutron matter as a function of density 

using Argonne V18.Blue  line show results 

using two body forces only and black line 

shows the result after inclusion of three 

body forces (UVII). 

Fig.5. Mass density, Pressure and Sound 

velocity for Neutron Matter using Argonne 

V18 

  



 

 

JK Knowledge Initiative               2017; 1(2): 71  

 

30.5±3MeV. (Haustein, 1988) and L is 

52±20MeV (Chen, 2011). The symmetry 

energy can be expressed in terms of the 

difference between the binding energy of pure 

neutron matter EA (ρ, 1) and that of symmetric 

nuclear matter  EA(ρ,0) i.e. 

        
( ) ( ,1) ( ,0)sym A AE E E   

 

The density slope parameter L is defined as 

given by Vidana and Constanca (2009): 

      
03

symdE
L

d





; 0 
                  (23)                      

The values of symmetry energy and 

density slope at saturation point are listed in 

Table I. We observe from the table that our 

results are quite close to the empirical values.  

Conclusion 

We have investigated the effect of using 

three different modern high quality nucleon-

nucleon potentials on the EOS calculated in 

BHF. We observe that our results with only 

two body force reconfirm the Coester band. 

We have been able to include the effect 

of two types of three-body forces in our BHF 

calculations. We note that the inclusion of three 

body forces in BHF improves the agreement 

between our results and the empirical values. 

Further the EOS turns out to be stiffer when 

TBF is included in the BHF calculations as 

given by Baldo and Ferreira (1999). 

Our results for incompressibility, 

effective mass and symmetry energy are in a 

good agreement with their empirical estimates. 
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