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Abstract: In this paper, we use auxiliary principal technique to suggest a new class of predictor-corrector algorithms for
solving general mixed equilibrium problems. The convergence of the proposed methods either requires partially relaxed
strongly monotonicity. As special cases we obtain a number of known and new results for solving various classes of
equilibrium and variational inequalities.
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Introduction

In accordance with [1], under an equilibrium problem (EP) we understand the problem of finding x

in a set K so as to satisfy F (},y) >0,Vy e K,where F is a real-valued bifunction on K . This was

initially motivated by the earlier work of Giannessi [2] who first introduced vector variational
inequalities in finite-dimensional Euclidean spaces. Many interesting and sophisticated problems in
applied mathematics can be cast the form of an EP, as in the fields of optimization, mathematical
economics, networks, and mechanics. For solving variational inequalities problems, Noor [9] has
used the auxiliary principal technique to suggest some iterative methods. The auxiliary principal
technique is mainly due to Lions and Stanpacchia [5] and Glowinski is approach to study the
existence of a solution of the mixed variational inequalities. In recent years, Noor [7-9] has used this
technique to study some predictor-corrector methods for classes of equilibrium and variational
inequality problems. In this paper, we use the auxiliary principal technique to suggest a class of three-
step predictor-corrector iterative methods for variational inequalities problems. Consequently, our
results represent an improvement and refinement of the previously known results.

Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by () and | - |,

respectively. Let C'(//) be the family of all non-empty compact subsets of H . Let 7': H — C(H) be

a multivalued operator and g: H —> H be a single-valued operator. Let K be a araouf1 23@gmail. com
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non-empty, closed and convex set in H .

For a given single-valued bi-function, F(.;): HxH — R we consider the problem of finding
ue H,g(u)e K,veT(u) such that F(v,g(v))+(v,g(v)—g(u)) =0, ¥V g(v) e K(2.1)

The inequality of type (2.1) is called the Generalized Mixed Set-Valued Variational Inequality
Problem . It can be shown that a wide class of multivalued free, obstacle, moving, equilibrium and
optimization problems arising in various branches of pure and vapplied sciences can be studied in the

general framework of generalized mixed set-valued variational inequality problem, See [1-10] and the

references therein.

We also need the following well known results and concepts.

Lemma.2.1. For all u,ve H , we have

2{u,v) =‘| u+v H2 —H u |’ —H v ”2(2.2)

Definition 2.1. For all u,,u,,z € K,w, € T(u,),w, € T(u,) the multivalued operator T : H — C(H) is
said to be :
1. g -partially relaxed strongly monotone, if there exists a constant & >0 , a >0 such that
2
F(w,g(u,)) + F(wy,,8(2) < af g(2)~g(m) |;
and
2
(W, —w,,8(u,)—g(2)) <d| g(z)-gw) |

2. g -co-coercive, if there exists a constant ¢ >0 such that

(W —wy, g(u)—g(u,)) 2 ﬂ” W =W,

3. g - monotone iff
Fw,gw,)) + FF(w,,g(1,)) <0.
and

W, —w,, g(u,) — g(1,)) =0
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Definition 2.2. For all u,u, e H,w, € T(«,),w, € T(u,), the multivalued operator 7 : H — C(H) is

said to be M — Lipschitz continuous iff there exists a constant ¢ >0, such that
M1 (1), T (1)) < 5” u, —u, H where M (-,-) is the Hausdorff metric on C(H).

We remark that if z=u,, then g — partially relaxed strong monotonicity is exactly g - monotonicity
of the operator 7 . It has been shown [11] that g— co-coerseivity implies g -partially relaxed
strongly monotonicity, but the converse is not true. This shows that concept of g -partially relaxed
strongly monotonicity is weaker than g -co-coercivity. For the single-valued operator 7, Definition

2.1 reduces to the definition of partially relaxed strongly monotonicity of the operator.
Main results

In this section, we suggest and analyze a new iterative method for solving the problem (2.1) by using
the auxiliary principle technique.

For a given weH,T(u),g(u)eK,vel(u) consider the problem of finding a solution

we H,g(w) e K, satisfying the auxiliary generalized mixed equilibrium problem (2.1)

PE (v, g(V)) +{pv + g(w) — g(u), g(v)

—g(w)) =0, for all g(v) e K(3.1)
where o >0 is a constant. We note that, if w=u, then clearly w is a solution of the generalized
mixed set-valued variational inequality problem (2.1). This observation enable us to suggest the
following predictor-corrector method for solving the generalized mixed set-valued variational

inequality problem (2.1).

Algorithm 3.1. For a given u, € H , compute the approximate solution u,,, by the iterative schemes

pF(n,,.g()Hpn,,t8(1,, 4 1)-8W,).8(v)-8g(u,,,1))>0,Vg(v)€K(3.2)
N, €1(w,):m, 41—, [<M(T(w,,, 1).7(w)))),(3.3)
PF(S,.8(v) +(BS, +g(w,) —&(y,),
g(v)—g(w,))=20,Vg(v) e K(3.4)
gn € T(yn) : H §;r+1 _én " S

M(T(3,,).7(,)) (3.5)
WE(Y,, @)V Hy,8(v,,)-8(10,) .8 (v)-8(6,)20,Y8(1 €K, (3.6)
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V€T~V [SM(T (1), T (), (3.7)

Where n=0,1,2,.. and p>0,3>0 and pu>0 are constants.

Note that, if F(v,g(v))=(v,g(v)—g(u)) then Algorithm 3.1 reduces to the following iterative
method.

Algorithm 3.2. For a given u, € H , compute the approximate solution u,,, by the iterative schemes

n+l

(P, +8(1y, 4 1)-8(W,,).8(V)—g(u,, , 1))20,Vg(v)eK
N €TW,)iM, N, [<SM(T(w,, 1), T(W,),
(BE,re(w,)—g(,).8(v)-g(w,))=0,vg(v)eK
En €T, 18,41 -8, I<sM(T(,, ). 1)),
(W, t8(0,)-8(u,,).8(v)-g(,)=0,vg(v) eK;
V€T~V [SM(T ), 1)),

where n=0,1,2,.. and p>0,3>0 and pn>0 are constants.

which is called the predictor-corrector method for solving generalized variational inequalities.
For a suitable choice of the operators and the space H, one can obtain various new and known

methods for solving equilibrium and variational inequality problems.

Theorem 3.1. Let H be a finite dimensional space. Let 7 : H — C(H) g - partially relaxed strongly

monotone operators with constant «,a>0. Let F(.):HxH —> R be a bi-functional and

g:H — H be invertible and 0< p < . If u,,, is the approximate solution obtained from

2(a+a)

Algorithm 3.1 and u € H is the exact solution of (2.1), then lim =73

n—»-)‘:-un
For the proof of the theorem we need the following result.

Lemma: 3.1. Let u € H be the exact solution of (2.1) and u_,, be the approximate solution obtained

n+l

from Algorithm 3.1. Let F(.-): HxH — R be a bi-functional and g:H — H be invertible and
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0<p< If T:H — C(H), g-partially relaxed strongly monotone operators with constant

2Aa+a)
a >0, then

| gu,.)—g@) | <| g,)—gw |
—(1=2p(a+a))| gu,.)—g,) [ 3.8

where 0< p <
2(a+a)

Proof:- Let u e H, be a solution of (2.1). Then pF(v,g(v))+{pv,g(v)—g(u))=>0,V g(v) e K(3.9)
PEW,g(v) +(Bv,g(v)—g(u)) 20,V g(v) e K(3.10)

UE(v,g(v) +(uv,g(v)—g(u)) 20,V g(v)e K@3.11) where p >0, >0,u >0 are constants.

Now taking V=1, in (3.9) and v in (3.2), we have

Il
=

PF(v,g(u,, ) +{pv.g(u,,)~ g())=0,(3.12) and

plF(n,,gw) +{pn, +gu,,)—gw,),gu)-gu,.,)) >0
(3.13)

Adding (3.12) and (3.13), we have

(g(u,.,)—gw,), gw)—g(u,.,)

> = pLE@,.g) + F(v,g(u,,)) +(n, —v,gw) - g(,,,))]
> —(a+a)p| g@,.)—gw,) [
> (3.14)

Where we have used the fact that 7 is g -partially relaxed strongly monotone with constant &,a > 0.
Setting u = g(u)—g(u,,,) and v=g(u,,,)—g(w,) in (2.2), we obtained
(g(ui7+1 ) - g(wn )" g(u) - g(“iﬁl ))

%{I\ g(u)—g(w,) || g,)—gw,) | -] g@)-g,.) [}
(3.15)

Combining (3.14) and (3.15), we have
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| 2Gr,)—2Go) | < gw,)—gG) |1 —Q —2p(ax+a))| gu,.,)—gw,) [(3.16)

Taking v=u in (3.4) and v=w, in (3.10), we have SF(v,g(w,)) +{(fv,g(w,)—g(u))>0,(3.17)

and SF(&,,g(w))+(ps, +g(w,)—g(y,),gu)-g(w,))=0,(3.18)
Adding (3.17) and (3.18), we have

(gw,)—g(y,).g(u)—g(w,))
> —B [F(E,.g) +F(v,g)+(&, —v,g(u)— g(w,))]
> —Bla+a)| g)-gw) | (.19

Since 7T is g -partially relaxed strongly monotone operators with constant a,a > 0.

Now taking u = g(u)—g(w,) and v=g(w,)—g(y,) in (2.2), we have

(g(w,)-g(¥,).8)-g(w,))

- Sl e@=g0) [ - g0n)-0) |- gw-g0w) [} 620

Combining (3.19) and (3.20), we have

| gy—gw) [ < | g —g) [~ -28@+a)] gv,)-gw,) [
< | g -2, [.for 0<[)’<2; (3.21)
(ax+a)

Similarly, by taking v=u in (3.6) and v=y, in (3.11) and using the g -partially relaxed strongly
monotonicity of the operator 7 , we have

(2(y,)-2(u,).g) - g(y,) > ~pa+a)| g(y,)-gw,) [(322)
Letting = g(u)—g(y,) and v=g(y,)—g(u,) in (2.2), and combining the resultant with (3.22), we

have

1A

| g —g@,) " —Q-2u(ax+a)| gr,)-gw,) |’
| gy —g@,) ", for 0<pu< (3.23)

| gy —gG) |’

1A

2(ax+a)
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| g(u,.)—g,)+g,)—gw,) |’
| g@,.)—g@,) | +| g,)—gmw,) |’
+2(g(u,, ) —g(u,), g(u,)—g(w,)) 3.24)

| g(,.)—gw,) |

Combining (3.16), (2.21), (3.23)and (3.24), we obtain
| g, -g) [ <| g,)-g@) | -(1-2p(a+a)| g,,)-gw,) |

where 0< p <

, the required result (3.5)
2(a+a)

Proof of the Theorem 3.1 : Let u € H be a solution of (2.1). Since 0< p <

! , from (3.8), it
2(a+a)

follows that the sequence {| g(u)—g(u,) [} is non increasing and consequently {u,} is bounded.

2
"

Furthermore, we have i(l —2(o:+a)p)H g(u, ) -g(u,) Hj < ” g(u,)—g(u,)
ey

which implies that lim | g(u,,,)—g(u,) |=0(3.25). Let @i be the cluster point of {u,} and let the

subsequence {u,,j} of the sequence {u,} converges to i € H . Replacing w, and y, by {u,,j} in (3.2),

(34) and (3.6), taking the limit »n,—>o and using (3.25), we have

F(v,g(v))+{v,g(v)—g(@)) >0, V g(v) e K,which implies that # solves the generalized mixed set-

valued variational inequality problem (2.1) and | g(u,,)— g(u) H2 <| g(u,)—gu) “2 Thus, it

follows from the above inequality that {u,}~ has exactly one limit point # and Lm g(u,)= g(%)

=¥

Since g is invertible, thus fim u, = . It remains to show that v € T'(«). From (3.7) and using the M -

H—»00

Lipschitz continuity of 7", we have H vV, —V H <M(T(u,), 7)) < 5” u, —u

|, which implies that

v, =V as n —oo. Now consider

dw,T(w)) < |v-v, |[+d(v.T(u)
< H v—v, [+ M(T(u,),T(un))
- HV—Vn ‘|+” un—u‘—>0.

as n —» o
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Where d(v,T(u)) =inf {| v—z ||:zeT(u)}, and §>0 is the M -Lipschitz continuity constant.

From the above inequality, it follows that d(v,7(u))=0. This implies that v eT(u), since

T(u)yc C(H).

This complete the proof. [.lin]

If F(v,g(v))=(v,g(v)—g(u)), then Algorithm 3.2 a predictor-corrector method for solving the

following variational inequalities.

Corollary 3.1. Let H be a finite dimensional space.Let 7 : H — C(H) is g- partially relaxed

strongly monotone operators with constant «,a>0 . Let g:H — H be invertible and
1 . . . . . .
0<p< ﬁ If u,,, is the approximate solution obtained from Algorithm 3.2 and u € H is the
a+a

exact solution of

(v,g(v)-g(u)) =0, ¥V g(v) € K(3.26)

then lim ,_..u, =u.

Corollary 3.2. If g=1 , the identity operator , then corollary 3.1 is equivalent to find # € K such
that (v,v—u) >0, VveKthen lim, .1, =u.

Remark

The corollary 3.1 is called multivalued variational inequality. It is known that a wide class of
multivalued odd order and non symmetric free, obstacle moving, equilibrium and optimization
problems arising in pure and applied sciences can be studied via the multivalued variational
inequalities (3.26); see, for example, Noor[7,8] The corollary 3.2.is called the generalized variational

inequalities introduced and studied by Fang and Pererson[5] see also [5,9] and reference therein.
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