
 

 

 
Vol. (1) No. (1) March 2018 

           JK Research Journal in Mathematics and Computer Sciences         
 

68  

 

Certain expansion formulae involving a basic analogue of I-function 
 

*
Farooq Ahmad

1
,  D.K. Jain

2
  Alok Jain

3 

 
1
 Department of Mathematics, Govt. Degree College, Kupwara, J&K-India.  

2 
Department of Mathematics Madhav Institute of technology and science, Gwalior-India 

3
 Department of Mathematics, Amity University, Gwalior-India 

 

 

 

Abstract: In the present paper, the authors explain certain expansion of the basic analogue of the I-function in 

relationship with the applications ofq-Leibnitz rule for the Weyl type q-derivatives of a product of two functions. 

Expansion formulae involving a basic analogue of H-function, Meijer’s G-function and MacRobert’s E-function have 

been derived as special cases of the results. 
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Introduction and Mathematical Preliminaries 

 

Our translation of real world problems to mathematical expressions relies on calculus, which 

in turn relies on the differentiation and integration operations of arbitrary order with a sort of 

misnomer fractional calculus which is also a natural generalization of calculus and its mathematical 

history is equally long. It plays a significant role in number of fields such as physics, rheology, 

quantitative biology, electro-chemistry, scattering theory, diffusion, transport theory, probability, 

elasticity, control theory, engineering mathematics and many others. Fractional calculus like many 

other mathematical disciplines and ideas has its origin in the quest of researchers for to expand its 

applications to new fields. This freedom of order opens new dimensions and many problems of 

applied sciences can be tackled in more efficient way by means of fractional calculus.  

The purpose of this paper is to increase the accessibility of different dimensions of q-fractional 

calculus and generalization of basic hyper-geometric functions to the real world problems of 

engineering, science and economics. Present paper reveals a brief history, definition and applications 

of basic hyper-geometric functions and their generalizations in light of different mathematical 

disciplines.The paper is devoted to derive certain expansion formulae for a basic analogue of I-

function defined by [1] in terms of Gamma function as follows: 
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and βj are all positive integers, and aj, bj are complex numbers, where L 

is contour of integration running from - i∞ to i∞ in such a manner so that all poles of 
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The above definition can be used to define the q

Riemann-Liouville fractional integrals:

integral is given by: 
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fractional integrals of arbitrary order for a function f(t), is a natural consequence of the well
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Main Results 

In this section, we shall establish certain results associated with basic analogue of I

by assigning suitable values to the functions 
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right hand side of the given theorem (7).
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(16) 

 

Conclusion 

In this paper, we have explored the possibility for derivation of some expansions of basic 

analogue I- function. The results thus derived are general in character and likely to find certain 

applications in the theory of hyper-geometric functions. Finally we conclude with the remark that the 

results and the operators proved in this paper appear to be new and likely to have useful applications 

to a wide range of problems of mathematics, statistics and physical sciences. 
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