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Abstract: In this paper we introduce the notion of D -valued 2-inner product on hyperbolic-valued or D -valued
modules. Further, we show that the D -valued 2-inner product on a D -module induces a real 2-inner product on its
idempotent components. We also establish a relation between the D -valued 2-inner product on D -modules and the D -
valued inner product on D -modules and real 2-inner product on real linear spaces.

Keywords: Hyperbolic modules, hyperbolic-valued norm, real-valued 2-norm, real-valued 2-inner product, 2-inner
product real linear-spaces. AMS Subject Classification 46422, 46470, 46C99.

Introduction

The notion of 2-normed real linear spaces was initially introduced by S. Gahler [7]. In 1963,
Gabhler introduced the concept of 2-metric spaces and later he extended his idea to 2-normed real
linear spacess. Since then, many researchers have studied these spaces from different points of view
and obtained various results, see, for instance [2, 3, 4, 6, 9, 15]. The notion of 2-normed spaces is
basically a two dimensional analogue of a normed space which got more attention after the
publication of a paper [15]. In this paper, A. White defined and investigated the concept of bounded
linear 2-functionals on 2-normed real linear spaces.

Further, he proved a Hahn-Banach type extension theorem for linear 2-functionals on 2-
normed real linear spaces. In [4] and [5], Diminnie, Gahler and white introduced the concept of 2-
inner product spaces and gave some new characterizations of 2-inner product spaces. Till 2000, the
theory of 2-norm was restricted only to real linear spaces but in 2001, S. N. Lal et al. published a
paper [9] in which they introduced the concept of complex 2-normed linear spaces and established a
Hahn-Banach extension theorem for complex linear 2-functionals. In [14], the authors inroduced the
notion of 2-normed D -modules over the commutating non-division ring D of hyperbolic numbers
and proved the Hahn-Banach theorem for D -linear 2-functionals.

In the present paper, we introduce the notion of D -valued 2-inner product on D -modules and
further, establish its relation with the D -valued inner product on D -modules and real 2-inner product

on real linear spaces.
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A Review of Hyperbolic Numbers

In this section we summarize some basic properties of hyperbolic numbers which can be

found in more details in [1, 12, 13] and the references therein. The hyperbolic number can be seen as
a particular case of bicomplex number. The ring of bicomplex numbers is the commutative ring BC
defined as follows:

BC= {Z =2z, +jz, | 2,2, eC(i)} where i and j are commutating imaginary units with i* = j* = —1
. In particular, if we put z, =x,, z, =iy, with x,,y, eR and k =i/, then Z=x, +ky, is an element
of the set D of hyperbolic numbers. Thus, the ring D of hyperbolic numbers is the commutative ring
defined as D= {a +kb | a,beR k> =1 with ke R} Let z=a+kbeD. Then the }-conjugation on
z is given by z' =a —kb. This 1 -conjugation on D is an additive, involutive and multiplicative in

nature. A hyperbolic number z =a + kb is said to be an invertible if zz" =a* —b*> #0. Thus, inverse

of zeD is given by

=
If both @ and b are non-zero but a> —b* =0, then z is a zero-divisior in D . We denote the set of all

zero-divisiors in D by NC,,, that is, NC, = {z =a+kb|z#0,zz" =a’> - b’ = 0}

The ring D of hyperbolic numbers is not a division ring as one can see that if ¢, = 5(1 +k)and its T -

conjugate e, = e, =§(1—k), then e.e, =0, i.e, ¢ and e, are zero-divisiors in the ring D. The

numbers e, and e, are mutually complementary idempotent components. They make up the so called
idempotent basis of hyperbolic numbers. Thus, every hyperbolic number z=a+kb in D can be
written as : z=¢eq, +e,a,, (0.1)

where o, =a+b and o, =a—b are real numbers. Formula (0.1) is called the idempotent
representation of a hyperbolic number. Further, the two sets ¢D and e,D are (principal) ideals in the
ring D such that ¢De,D={0} and eD+e,D=D. Hence, we can writt D=¢D+eD.(0.2).

Formula (0.2) is called the idempotent decomposition of D. Thus the algebraic operations of

addition, multiplication, taking of inverse, etc. can be realized component-wise. The set of non-

negative hyperbolic numbers is given by (see [1, P. 19]), D" = {z =eq, tea, |a,a, > 0}. Further, for
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any z,u €D, we write z<"u whenever #—z€D" and it defines a partial order on D . Also, if we
take z,u €R | then z<'u if and only if z<u . Thus <' is an extension of the total order < on R . For
any z=ea,+e,a, €D, the hyperbolic-valued modulus on D is given by
|z, =lea, +e.a, | =e o | +e, |, €D, (03)

where | ¢, | and |e, | denote the usual modulus of real numbers ¢, and «, respectively. For more

details, see ([1, Section 1.5], [12] and [13]).
Let X be a D -module. Consider the sets X, =¢ X and X, =e,X. Then

X,NnX,={0} and X =¢ X, +e,X,, (0.4)
where X, and X, are real linear spaces as well as D -modules. Formula (0.4) is called the
idempotent decomposition of X . Thus, any x € X' can be uniquely written as x =ex, +e,x, with
x, € X, and x, € X,. Further, if U and W be any two real linear spaces, then it can be shown that
X=eU+e,W is a D-module. Moreover, for any D-module X, we denote the set of all zero-

divisiors in X by NC, , thatis, NC, ={0#zeX:zeeX Ue, X}

Definition 2.1 Let X be a D -module and | . | : X —D" be a function such that for any x,y € X

and a €D, it satisfies the following properties:

1. H b HDZO@xZO.
2 | ex [, Hal] x|,

3. H x+y|

o 51 x o+l 5 o

Then we say that H . ” is a hyperbolic or D -valued norm on X . The hyperbolic-valued norm on

D
hyperbolic modules has been intensively discussed in [1, 12] and many other references therein.

Definition 2.2 Let X be a D -module of dimension greater 1. A map

(ol ):XxX—>D
is said to be D -valued 2-norm on X if for all x, y,ze X and «eD it satisfies the following
properties:

L. | x,y |, =0 ifand only if x, y are linearly dependent,

2 >y o=l vox o
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4 xryz o < wz o+ vz o

Then the pair (.X,|

”D) is called a 2-normed D -module. Further, it can be shown that

” X,y ”DED+ and ” X,V +ox HD:H X,y HD Vx,yeX and VaeD.

2-inner product D -modules
In this section, we introduce the notion of D -valued 2-inner product on D -modules and discuss some
of its basic properties. We also discuss Parallelogram law and Polarization identity for 2-inner

product D -modules.
Definition 3.1 Let X be a D -module of dimension greater than 1. A map
(,]): XxXxX —>D
is said to be a D -valued 2-inner product on X if for each x,y,ze X, it satisfies the following
properties :
1. (x,x|z)eD" ; (x,x|z)=0 ifand only if x and z are linearly dependent,

2. (x,x|z>=(z,z|x> ,

3. <x,y|z>=<y,x|z>$

4. (ax,y|z)=a(x,y|z); forany aeD,

5. <x+x',y |z) =(x,y|z>+<x',y|z).
Then the pair (X,(.,.|.)) is called a 2-inner product D -module. Further, for each x, y, z€ X and for
every a €D, some basic properties of D -valued 2-inner product (...|.) can be easily obtained as
follows:

(vay|z)=a'(x.y|z) and (x.y|az)=laf (x.y|z).

Remark 3.2 Let X, and X, be two real linear spaces with dim(X,)>1 and dim(X,)>1. In
addition, we assume that both X, and X, are real 2-inner product spaces with corresponding 2-

inner products (.,.|.) and (...|.),. Let X =¢X,+e,X,. Clearly, X is a D -module with dim (X) > 1
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Forany x=¢ex, +e,x,, y=¢)y, +e,y,, z=¢z +e,z, € X, we define
(x,y | z) = (e,x1 +e,x,,ey +e), ez +e222> = el<xl,y, |zl>] +(32<Jc2,y2 | 2:2)2. (0.5)
Then the formula (0.5) is a D -valued 2-inner product on X can be verified easily as follows :
Since (x;,x,|z,), >0, ¥ x,z €R, (/=12), implies (x,x|z) eD". Further,
(x,x|z) =0 e(x,x, | 2), +e,(x,,x,|z,), =0 (x,x |z), =0 and (x,,x,|z,), =0
<> x, and z, arelinear]l y dependentand  x, and z, arelinearl y dependent

< x and z are linearly dependent. Ao, (x,y|z)=¢(x,,y|2) +e,(x,,9,2,),

*

=e (X, 12), + e (¥ X, | 2,), =€ (V1% | z,): +&{¥y:%, | 2,),
=(e(ypx12), +e (x| 2,),) =(r.x|z) .
Similarly, we can show <x, X | z) = (z,z | x). Next, for any ¢ €D,
(ax,y|z)={(ea, + e, )ex, +ex,),ey +ey, ez +e,z,)
=(e(a x)+e(a, X)) q0 +e,), ez, +e,z,) =e(o x, 0, | 2,), +e(a x,.1, | 2,),
= (x, 0| 2,), +e,00(%,, 1, | 2,), = (e +e,) (ex, ) | 2,), +ex(x,, ¥, 2,),) =a{x, y | 2).
Finally, let x, x', y,z€ X . Then (x+x,y|z)=e(x + X,y |z} +e(x, +x}, 1, |z,)
=e,((x, 0 | z)+ (<L 2D +e(x,, v, [ 2,) +(x], 0, | 2,))
=(@(x.012) +ex(xp, 3, |2 +Hex)y [ 2) +ex{xs, 1, 2,))
Z(x,y | z) +(x',y | z).
Proposition 3.3 Let X be a 2-inner product D -module with dim(X)>1. Then X =eX and
X, =e,X can be seen as 2-inner product real linear spaces with their real 2-inner products induced

by the D -valued 2-inner product on X .

Proof. Let X be a 2-inner product D -module with dim(X)>1. Clearly, ¢ X and e,X are real
linear spaces with dim (e, X)>1 and dim(e,X)>1. Let (‘,‘l‘) X xXxX —D be the D -valued 2-
inner product on X . Then for any x, y,z € X', we can write it as

(x,y|z)=e®(x,y|z)+e,¥(x,y]|2),
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where @, ¥ : X x X x X - R are real-valued functions such that
e®(x,y|z)=¢/(x,y|z)and ,¥(x, | z) = e,(x, y | z). Further,
e®(ex,eylez)+eY(ex,eylez)= (elx'! eyl elz> - el<elx9 ey elz>

=g (elq)(elx’ eylez)+eY(ex,ey| 312)): e, D(ex,ey | ez).
This implies that

W(ex,ey|ez)=0and (elx, ey | elz> =e,®(ex,ey|ez). (0.6)
Similarly, one can show
D(e,x,e,y | e,z) =0and (ezx, e ezz) =e,W(e,x,e,y]e,z). (0.7)
Thus, by using (0.6) and (0.7), one can write
(x,y | z) = el(x,y | z) +ez<x,y | z) = e,efef(x,y | z) + eze;e;f(x,y | z)
= (e]x, ey elz) + (ezx, ey ezz> = (e]x, ey elz) + (ezx,ezy | ezz>
=eD(ex,ey|ez)+e,¥Y(ex,eylez).
That is, (x,y|z) =e®(ex,e,y|ez)+e,P(ex ey e,z). (0.8)

We now show that @ is a real 2-inner product on a real linear space ¢X and ¥ is a real 2-inner
product on a real linear space e,.X . Since, forany 4 €R and x,y,z € X, we have

(Ax,p]2) = Ax, v |2),
which gives that

eD(Aex,ey|ez)+eY(lex,ey|ez) =UeD(ex,ey|ez)+e,Y(ex, ey e2)).
Thus, D(Aex,ey|ez)=ADP(ex,ey|ez) and

Y(dex,e,y|ez)=AY(ex,e,y|e,z).
Further, let x,x',y,z€ X . Then (x+x’,y|z)=(x,y|z)+(x’,y|z). Thus, by using (0.8), we obtain
e®(extex,eylez)+eY(ex+ex,eylez)=ed(exey|ez)

+e,V(e,x,e,y|ez)+eP(ex’,ey|ez)+e, Y(ex,ey|e,z)

which implies that
D(ex +e,x', e, |ez) = D(ex,e,y | e2) + D(ex, e, | ¢:2) and

Y(e,x+ex',e,y|ez)=Y(ex,e,y|ez)+P(ex,ey|ez).
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Next, for each x,z € X', (x,x|z)=(z,z|x). Thus, from (0.8), we get
D(ex,ex|ez)=D(ez,ez]|ex), Y(e,x,e,x|ez)="Y(eze,z|ex). Similarly, we can show
(e x,ey|ez)=D(e v, ex|ez), Y(ex.ey|ez)="Y(e,yex|ez).
Now for any x,z € X, we have (x,x|z) D" .That is, e®(e,x,e,x | €z)+e,¥(e,x,e,x | e.) €D" . This
implies that ®d(ex,ex|ez)>0 and W(e,x,e,x|e,)>0.Finally, it remains to show that for any
x,ze X, O(ex,ex|ez)=0 if and only if ex and ez are linearly dependent and similarly for ‘¥ .
First suppose that ®(ex,ex|ez)=0. This means e®(ex,ex|ez)=0 and hence by (0.6), we have
(e,x,e,x|elz)=0. Since <.,.|.> is a D -valued 2-inner product on X implies that ex and ¢z are
linearly dependent.Conversly, suppose that x,ze€ X such that ex and ez are linearly dependent.
Then

(x,x|z)=e(x,x|z)+e,(x,x|z) =(gx,ex|ez)+(eX,e,x|e,z)

= (ezx, e,x | ezz> =e,'V(ex,e,x|ez).
Thus, by using (0.8), we have ®(e,x,ex|ez)=0 and similarly for ¥ . Hence @ defines a real 2-

inner product on the real linear space ¢ X and ‘¥ defines a real 2-inner product on the real linear

space e,X . On a 2-inner product D -module (X,(...|.)), one may observe that | x,y |, =(x,x| y)%
defines a D -valued 2-norm on X . Then it is easy to prove the following results for 2-inner product
D -module X .

Theorem 3.4 Ler (X ,(.,. | .)) be a 2-inner product D -module with dim (X)) >1, where the D -valued

2-inner product on X is induced by the inner products on its idempotent components X, and X, .

Then for any x,y,z€ X,

| x+y.z g+ x=y.z [5=2( x.z [5+] ».2 [5)

Proof. Forany x,y,z€ X,

2
| x+v.z g =(x+y.x+y|z) =(xe +x,6, +ye + 1,6, X +xe, +ye + e |ze +2e,)
= <(x| +ye +(x, + y,)e,, (X +y)e +(x, +y,)e, | ze, + 2262>

:el<(x1 + ) (%, +yl)|zl>1 +ez<(x2 +1,), (%, +}’2)|22>2

21
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:‘31” X, 2, ”12 +el‘| Yis 2 ”|2+el<xl’yl |z|>1+el(}’1»x1 |z}>l

2 2
+82” X2, |, +82” VysZ, H2+¢?2<x2,y2 |zz)2 +ez<y?,)|c2 |zz)2.

Similarly, we have
| x=»z [ =(x=yx-ylz)
= 31” Xps 2y “12 _e|<x|:y| |Z|>1 —el<y1,xl |ZI>+el” Y152y "f

2 2
2 _ez(xzayz |Zz>2 _ez(yz’xz |Z2)g +ez” Vs 2y Hz

+e2H X,,Z,

On adding we get,

el

; + 282” X,,2,

el

H X+y,z H;+” X—y,z \|;=2e1|| X, 2 ‘|12+2el” V12, §+282” V5.2,

2

=2 x.z 5.

2
ol ¥z

2 2 2
—2(81” X,z 1+e22|| Xy, 2, ”2)+2(€|" Y1z, ||l +82” VysZ,

This proves the Parallelogram Law for 2-inner product D -module X .

The next result is the Polarization Identity for 2-inner product D -module X .

Theorem 3.5 Let (X ,(.,. | .)) be a 2-inner product D -module with dim(X) > 1, where the D -valued

2-inner product on X is induced by the inner products on its idempotent components X, and X,.

Then for any x,y,z€ X,
1 2 2
(x,y|z)=z(\| x+y,z |, = x=y.z |,)- Proof Forany x,y,z€ X,

| x+y,z2 ||; =(x+yx+ylz)=e x,z ”12 +e| vz, ”12 +e(x, » |zl>1 +e(vx |31>|

+€2” X552, j"'ez” V2,5 ”j +ez(x2,y2 |:2)3 +€2<y2’x2 |22>2.

Similarly, we have

” xX—y,z ”; =<x—y,x—y |z> = el” X5 ”12 _el<x13y1 |z|>] _e|<Y1ax| |z|>1 +e|” Yis2) ”12
+6 x,,2, ”2 —e(x,. 7, |32>2 —ez<y2,x2 |zz>2 +&| y,.2, ”2

On subtracting we get,

2 2
ot x=v.2 [

| x+y,z
291(2<x13y| |Zl)1 +2<y1vx1 |Z])1)+e2(2<x2’y2 |22>2 +2<y23x2 |Zz)2)

=2(el<xhyl |ZI>1 +ez(x2,y2 |23>2)+2(€|<y1,x1 |ZI>1 +ez(y2,x2 |23>2)
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= 2<x,y | z>+ 2<y,x | z) = 2(x,y |z) + 2<x,y | z)*
= 4(x, | z), because (x,y|z)eD,s0 (x,y|z) =(x,y|z).

Hence (x,y|z)=&(|| X+ y,z ;—" X—y,z ||é).

Now, it is natural to study the relation between the D -valued 2-inner product and D -valued inner
product on D -modules. In this direction, C. Diminnie, S. Gahler and A. White ([4], [S]) are probably
the first to draw a connection between real inner product and real 2-inner product on a real linear
space. They proved that if X is a real inner product space, then the real 2-inner product can be
defined on X . Further, H. Gunawan [8] proved that a real 2-inner product space is a real inner
product space. However, with the little adjustments, a similar relation between D -valued 2-inner

product and D -valued inner product on D -modules can be developed.

For this, let (,) be a D -valued inner product on a D -module X . Now for any x, y,z € X, we define

(x, V| z) - (x,y)(z,z) - (x,z)(y,z). (0.9)
Then the formula (0.9) is a D -valued 2-inner product on a D -module X can be verified easily as

follows:

(xx|2) = (xz.2) = (. 2w 2) = (. x0)z,2) = (v, 20 2) =] % o] 2

(byusingthe bicomplexS chwarzineq uality ).

;—|<x,z) reD,

Abo, (x,x12) =05 (x,1)z.2) - (x, 22 =0 | x [} = | (r2)E=0
< either x=0 or z=0 <> x and z arelinearl ydependent .
Newt 1,3 2= (5 0o 2~ 12)(2) = () (5,20 (200,2) = () (5.2 — 0,20
(because(z, z),(y, z) and (x, z)arehyperbo licnumbers )
= (. x)(z2) = (. 2)(x.2))
=(y,x|z)". Similarly, we can prove (x,x|z)=(z,z|x). Further, forany ¢ €D,
(ax,ylz)=(ax,y)z,z)—(ax,z)(y,z)

= a(x, y)(z, z) - a(x, z)(y, z)
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- a(x.3)(z.2) - (v2)p.2) =l |2),

Finally, for each x, x', y, z € X , we have

(x+x,y|z)=(x+x"y)z.2)—(x+x",z)(y,z) =((x, ) + (X', ¥)Nz,2) = ((x,2) + (x", 2))( v, 2)

~ (e 3)e.2) + )22~ (2 2) (. 2).2)

= (e )Nz 2) (02X 2D+ (5 2)2) (M) = (o 12) (01 2).

Next, we will show that every D -valued 2-inner product module is a D -valued inner product

module. For this, let (X ,(.,.|.>) be a D -valued 2-inner product module. Choose a,b in X so that a
and b are linearly independent. In addition, we assume that a, is linearly independent to b,, /=1,2
Then we define a function (.,.): X x X — D as follows:

(x,y>=<x,y|a)+(x,y|b>,Vx,yeX. (0.10)
The formula (0.10) is a D -valued inner product on a D -module X . To see this, let x,y € X . Then,
clearly (x,x)=(x,x|a)+(x,x|b)eD". Further,

(x,x)=0<:>(x,x|a)+(x,x|b)=O

< x,a arelinear]l ydependent and x,b
are linearlyde pendent

<> x =0, becauseaan dbarelinea rlyindepen dent.

In order to proceed to the next step, take €D and x,y € X . Then
(ax,y)=(ax,yla)+(ax,y|b)=alx,y|a)+a(x,y|b) =a((x,y|a)+(x,y |b)) = a(x,y).

Also, (x,y)=(x,y [a)+(x,y |b)=(y,x|a) +(y,x|b) =(p,x) .

Finally, for any x,x,y,zeX, we have (x+x,y)=(x+x,yla)+(x+x,y|b)
=(x,y|a)+(x",y|a)+(x,y|b)+(x", y | b)

(x.yla)+{x,y b)) +(x',y[a)+(x, y| b))

=)+ {x, )
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