

JK Knowledge Initiative 2017; 1(2): 5

Analysis of Cookie Based Session Management in HTTP and Security

Concerns

Supriya Gupta

Department of Computer Sciences. Govt. P.G. College, Rajouri, J&K, India

Abstract: Web-based applications often use cookies to maintain state in HTTP protocol. However the uses of cookie

have grown far beyond their original intention. Cookies are used to store login information, to track pages visited on a

site, to store user preferences, to collect personal user information etc. Because cookies are implemented as clear text,

they may be compromised easily; any sensitive information that is conveyed in them is exposed to intruders. This

paper presents the security vulnerabilities in cookie based session management and expose various threats that

cookies pose to information security. It also demonstrates how browser add-ons, proxies can be used by a malicious

intermediary to alter the HTTP headers as they travel in either direction to impersonate legitimate user sessions.

Key words: Cookies; State; Security; Intruders; Vulnerabilities; Proxies

Introduction

HTTP is a stateless protocol [1]. This

means that each request for a page is treated as

a new request by the server. As a result,

information from one request is generally not

available to the next request. The stateless

nature of HTTP was a serious problem in

developing shopping cart, webmail and other

interactive applications. The solution was the

addition of a new technology called state

management using cookies that allows the

state of a client session with a server to be

main t a ined ac ross a s e r i es o f HTTP

transactions. A cookie is a small text file that

is saved on a user’s hard drive by a Web server

to store information about a particular user or

session. To initiate a session the server returns

an extra response header to the client, Set-

Cookie [2], in its response message, and the

user agent returns the unchanged cookie

information in a Cookie header in subsequent

requests to the origin server if it chooses to

continue the session. The server may choose to

include a new cookie with its responses, which

would supersede the old one and it relies on

the client to save the server’s state and to

return it on the next visit. By receiving back

*Corresponding author(s):

mangotwin22@gmail.com (Supriya Gupta)

the cookie, the server is able to identify the

user and retrieves the user's session from the

session database; thus, maintaining the user's

session. A cookie-based session ends when the

user logs off or closes the browser. The value

of the cookie is typically chosen

pseudorandomly. Any data associated with the

session, such as the session id of current

application user, a database key, the session

state itself, etc are stored on the server using

the cookie's value as an index. The uses of

cookie have grown far beyond their original

intention. Cookies are used to store login

information so that users don’t have to keep

entering name and password each time they

visit, to track which pages visited on a site, to

store user preferences, to collect personal user

information etc. The information in the Set-

Cookie2 and Cookie headers is unprotected

[2]. As a consequence: 1) Any sensitive

information that is conveyed in them is

exposed to intruders. 2) A malicious

intermediary could alter the headers as they

travel in either direction, with unpredictable

results. This paper analyzes the cookie based

session management and explores various

security issues associated with it.

JK Knowledge Initiative 2017; 1(2): 6

Experiment

A particular kind of session hijacking attack

called sidejacking [3] is examined in this paper

that involves sniffing cookie information and

using it to impersonate a user and gain

unauthorized access to a web-based service.

By forging the session, an attacker can

impersonate a valid client, and thus gain

information and perform actions on behalf of

the victim. In almost any cookie-based web

application and webmail programs like

Google’s Gmail, Microsoft’s Hotmail and

Yahoo Mail, users first authenticate using an

HTML form, if the user entered correct

credentials, then a browser cookie is set to

track the session. By stealing the already

authenticated session cookie and replaying the

same back to the Gmail server, an attacker can

easily log into the Gmail account without the

need of any user name and password. The

victim continues to use his/her session

unaware that somebody else is also in his/her

account. The attack continues till the user log

off.

In our experiment we performed a session

hijacking attack by intercepting the

communication of a user logging into his

Facebook account. Using this intercepted

communication we impersonated that user and

access his account from our attacking

machine. The attacks were tested on the

wireless network of University of Jammu to

ensure that they work as expected. One of the

nodes on network with IP address:

172.18.223.213 and MAC address: 00-21-00-

59-1E-0F was chosen as attacker. The IP

address of the default gateway was

192.170.1.1 and its MAC address was 00-0D-

ED-6C-F9-FF.

An open source packet analyzer, Wireshark,

was used to sniff all the traffic of the victim as

he browses Facebook. In order to capture the

right packets ARP cache poisoning [4]

technique was employed. Once the traffic of

the victim browsing to Facebook was

captured, the information in the cookie header

was copied to a file. Figure1 shows the cookie

captured.

With our HTTP data intercepted and

prepared for use, we used Webscarab, a web

security application testing tool, to actually

execute the attack. WebScarab has been

developed as open source by the Open Web

Application Security Project
1
 (OWASP). It

serves as a proxy intercepting web browser

web requests and web server responses,

allowing the operator to review and modify

requests created by the browser before they are

sent to the server, and to review and modify

responses returned from the server before they

are received by the browser. WebScarab is

able to intercept both HTTP and HTTPS

communication. WebScarab defaults to using

port 8008 on localhost for its proxy. Once the

proxy settings had been applied, the Facebook

is accessed in the browser. Using WebScarabs’

Edit request the cookie header was replaced

with that of victim’s cookie which was saved

previously. Figure 2 shows modification of

cookie in HTTP header. After accepting

Figure 1: Capturing Victim’s Facebook Cookie

JK Knowledge Initiative 2017; 1(2): 7

changes we logged in to the victims Facebook

account without need for user name and

password. Figure 3 shows the victim’s

Facebook account. Once we get into the

account we can perform any task like changing

status information, send messages etc. as the

victim just replaying that cookie again.

Figure 4 shows changing victim’s profile

settings. browsing you will need to save the

two tools straight out of the pet store, named

Hamster and Ferret. Both tools can be

downloaded from the link

“http://hamster.erratasec.com/”. These are both

command-line tools so the hamster folder can

be extracted to an easy to get to location.

Alternatively, you can download and use

Backtrack 4. BT4 is a Linux live-CD

distribution designed specifically for hacking

and penetration testing that comes with a

myriad of preinstalled and precompiled tools,

with Hamster/Ferret being two of them. You

can download BT4 from

“http://www.backtrack-linux.org/”. You will

then find Hamster in the

/pentest/sniffers/hamster folder. The screenshot

examples used in the rest of this tutorial are

taken from BT4.

The first step involved in this form of session

hijacking is to capture the traffic of the victim

user as he browses Facebook. This traffic can

actually be captured using any packet sniffing

application such as TCPDump or Wireshark,

but in order to capture the right packets you

will need to employ a technique such as ARP

cache poisoning (discussed in the first article in

this series).

Host broadcasts ARP packets to spoof ARP

tables of all computers on the LAN in order to

associate attacker’s MAC address with the IP

address of default gateway. Any traffic meant

for that IP address would be mistakenly sent to

the attacker instead. The attacker could then

choose to forward the traffic to the actual

default gateway or modify the data before

forwarding it (man-in-the-middle attack). The

attacker could also launch a denial-of-service

attack against a victim by associating a

nonexistent MAC address to the IP address of

the victim's default gateway. While spoofing

ARP tables, attacker’s system can act as

gateway (or ip-forwarder) without other users'

recognition on the LAN. This attack makes

possible many sorts of “man in the middle”

attacks. The tool used in demonstrating and

testing was WinArpAttacker
2
.

Figure 2: Altering HTTP Cookie Header

JK Knowledge Initiative 2017; 1(2): 8

WinArpAttacker is based on wpcap3, so it

requires wpcap driver before running it.

WinArpAttacker provides a menu based

approach to perform ARP cache poisoning and

man in the middle attacks against switched

networks. An open source packet analyzer,

Wireshark, was used to sniff all the traffic on

the LAN. These tools were used without any

modifications in performing the attacks. The

attacks were tested on the wireless network of

University of Jammu to ensure that they work

as expected. One of the nodes on network with

IP address: 172.18.221.213 and MAC address:

00-21-00-59-1E-0F was chosen as attacker.

The IP address of the default gateway was

192.170.1.1 and its MAC address was 00-0D-

ED-6C-F9-FF. Both the tools were initiated on

the attacker machine..WinArpAttacker all the

active hosts on the network, were scanned and

then the ARP SniffLan attack was initiated by

sending gratuitous ARP reply packets ,

associating attacker’s MAC address (00-21-00-

59-1E-0F) with the IP address of gateway

(192.170.1.1), to all hosts on the network and

the underlying network traffic was analyzed

using Wireshark. Figure 1 shows the packets

captured by Wireshark as soon as the attack

was initiated. Figure 2 presents the packet

payload in detail.

On receiving an ARP response, all devices on

the network updated their ARP caches

replacing the MAC address of gateway with

that of attacker (as seen in the response packet)

though they had not sent an ARP request. The

traffic sent to the gateway thus reaches the

attacker machine. Figure 3 shows the packets

received by the attacker as a result of ARP

spoofing attack.

ARP Spoofing prevention and detection

techniques

ARP cache poisoning problem is known to be

difficult to solve without compromising

efficiency. The only possible defense is the use

of static (non-changing) ARP entries [6]. To

prevent spoofing, the ARP tables would have

to have a static entry for each machine on the

network. The overhead in deploying these

tables, as well as keeping them up to date, is

not practical. Also some operating systems are

known to overwrite static ARP entries if they

receive Gratuitous ARP packets. Furthermore,

this also prevents the use of DHCP

configurations which frequently change

MAC/IP associations. The second

recommended action is port security also

known as Port Binding or MAC Binding. Port

Security prevents changes to the MAC tables of

a switch, unless manually performed by a

network administrator. It is not suitable for

large networks, or networks using DHCP. The

various other ARP spoofing prevention and

detection techniques along with the issues in

deploying them are discussed next.

Figure 3: Successfully Hijacked Facebook account

JK Knowledge Initiative 2017; 1(2): 9

A. Prevention Techniques: ARP spoofing

prevention techniques are designed to avoid

ARP spoofing attacks by covering up the

potential vulnerabilities. The major

vulnerabilities in ARP protocol are: 1) the ARP

is stateless; 2) lack of authentication and 3) the

broadcasting of ARP requests. Various

prevention techniques have been suggested that

address one kind of above mentioned

vulnerabilities or the other. These techniques

may employ changes in the design about how

ARP requests are made and how they are

permitted. The techniques are categorized

based on the vulnerability they address.

1. Authenticating the Sender:

a) Secure Address Resolution Protocol:
Bruschi, Ornaghi & Rosti [7] suggested a

secure version of ARP in which each host has a

public/private key pair certified by a local

trusted party on the LAN, which acts as a

Certification Authority. Messages are digitally

signed by the sender, thus preventing the

injection of spoofed information. It proposed a

permanent solution to ARP spoofing but the

biggest drawback is that it required changes to

be made in the network stack of all the hosts.

Moreover S-ARP uses Digital Signature

Algorithm (DSA) that leads to additional

overhead of cryptographic calculations. Goyal

& Tripathy [6] proposed a modification to S-

ARP based on the combination of digital

signatures and one time passwords based on

hash chains to authenticate ARP <IP, MAC>

mappings. Their scheme is based on the same

architecture as S-ARP, but its clever use of

cryptography allows it to be significantly

faster.

b) TARP: Lootah, Enck, & McDaniel [8]

introduced the Ticket-based Address

Resolution Protocol (TARP) protocol that

implements security by distributing centrally

generated MAC/IP address mapping

attestations, which they called tickets, to clients

as they join the network. The host with the

requested IP address sends a reply, attaching

previously obtained ticket and the signature on

the ticket proves that the local ticketing agent

(LTA) has issued it. The requesting host

receives the ticket, validating it with the LTA’s

public key. If the signature is valid, the address

association is accepted; otherwise, it is ignored.

With the introduction of TARP tickets, an

adversary cannot successfully forge a TARP

reply and, therefore, cannot exploit ARP

poisoning attacks. But the drawback is that

networks implementing TARP are vulnerable

to two types of attacks – active host

impersonation, and DoS through ticket

flooding. Furthermore an attacker can

impersonate a victim by spoofing its MAC

address and replaying a captured ticket but as

long as the ticket is valid.

Figure 4: Changing Victim’s Profile

JK Knowledge Initiative 2017; 1(2): 10

c) Deploying a Virtual Private Network

(VPN) to provide authentication and client-to-

gateway security of transmitted data also

provides a partial solution. On a VPN protected

network an attacker can still redirect and

passively monitor the traffic via the ARP based

attacks, but he can only gain access to an

encrypted data stream. Attackers still have the

ability to cause a denial of service by feeding

bogus data into the ARP caches of clients, but

the compromise of data will no longer be an

issue

2. Statefullness:

a) Some developers attempted to add

protection to the IP stack on the terminal

devices. The Antidote patch [9] requires a

machine to send a request to the previous MAC

address before changing an ARP entry. The

machine will only change the entry if the

request to the previous address is not answered.

Again, this approach does not give any real

protection against damage as the attacker

simply needs to ensure that the attack occur

when the machine with the previ-ous MAC

address is down or unreachable. Also in the

case of heavy load, the patch can actually cause

communication to these systems to fail.

Another similar approach, Anticap [10], does

not allow updating of the host ARP cache by an

ARP reply that carries a different MAC address

then the one already in the cache. This

unfortunately makes it drop legal gratuitous

ARP replies as well, which is a violation to the

ARP protocol specification [1].

b) Fuzzy logic approach: Trabelsi & Hajj

[13] proposed a solution in which the

prevention mechanism is based on the use of a

stateful ARP cache that uses fuzzy logic

approach to differentiate between normal and

malicious ARP replies. Each host in the

network collects two numerical values

describing the Trust Level (TL) and

Importance (Im) of each host, where the Im

factor is calculated as the percentage of

communication with a host and the TL is

assigned some initial value that decreases

exponentially if the host is an attacker and

increases linearly otherwise. The collected

information is stored in a database. Later on, it

will be used to classify certain hosts as

attackers or honests. This technique is not so

effective practically as it is not adequate to

consider that a host is not an attacker just

because of high percentage of communication

with that host.

3. Unicasting ARP requests

a) Using Central ARP server: Tai et al.

[11] proposed an improved ARP in which the

ARP request packets are not broadcasted but

instead unicasted to an ARP server which will

have all the <ip, MAC> mappings of all the

hosts connected to the network. This

significantly reduces ARP signaling and

processing overhead. In order to grab the

mapping of <ip,MAC> of any host, all packets

transferred between each host in the network

are listened and try to build up the ARP table

based on the DHCP messages passed between

each host and the DHCP server. But this

approach requires continuous scanning of

DHCP messages in order to update the ARP

cache in case there is the IP address of a

machine changes. And the major drawback is

that it will not be able to grab <ip, MAC>

mapping of any host if DHCP is not enabled

for the network.

B. Detection Techniques:

1. The Request-Reply Mismatch Algorithm

[12]: In this algorithm a sniffer listens for ARP

packets, keeping a table of pending requests

keyed by MAC address. Entries are removed

from the table when the matching reply arrives

after a timeout period. If a reply is seen without

a matching request being present in the table,

the administrator is notified. This algorithm

performs well for small networks but for large

networks the algorithm may incorrectly

consider an attack. This is a form of passive

detection techniques in which the ARP

requests/responses on the network are sniffed

to construct a MAC address to IP address

mapping database. If there is a change in any of

these mappings in future ARP traffic then an

alarm is raised to inform that an ARP spoofing

attack is underway. The most popular tool in

JK Knowledge Initiative 2017; 1(2): 11

this category is ARPWATCH [14]. The main

drawback of the passive method is a time lag

between learning the address mappings and

subsequent attack detection. In a situation

where the ARP spoofing began before the

detection tool was started for the first time, the

tool will learn the forged replies in its IP to

MAC address mapping database.

2. Active detection: Ramachandran and Nandi

[15] presented an active technique to detect

ARP spoofing. Based on the rules derived from

the correct behavior that a host’s network stack

should exhibit when it receives a packet, the

inconsistent ARP packets are filtered. Then a

TCP SYN packet is sent to the host to be

authenticated. Based on the fact that the Spoof

Detection Engine does/does not receive any

TCP packets in return to the SYN packet it

sent, it can judge the authenticity of the

received ARP response packet. This technique

is considered to be faster, intelligent, scalable

and more reliable in detecting attacks than the

passive methods.

3. Detection on switches via SNMP: Carnut &

Gondim [12] used counters provided by SNMP

management framework for packets in/out and

bytes in/out flowing through each switch port

to detect the ARP imbalance i.e. the difference

between the ARP packets entering and leaving

the port respectively. As the attacker resends

nearly the same amount of packets through the

very port it received, so they nearly cancel out.

Only the packets the attacker issues during the

poisoning component of the attack make this

number positive. Host that is the most

imbalance emitter determines a candidate

attacker and that receives unreplied packets

determine the candidate victim. The algorithm

is easy to implement but the false positives rate

is very high when implemented in actual

network.

Conclusions

The paper described a method of ARP attack in

detail. Also, in this paper, an extensive study of

proposed solutions to ARP spoofing attacks is

conducted. All the proposed detection and

prevention techniques that are mentioned above

have different scope and limitations. They are

either insecure or have unacceptable penalties

on system performance. Issues with

implementing a solution have also been

presented that can be used to assist security

instructors in selecting an appropriate solution

to be used for building secure LAN network.

As a conclusion of the study, a basic method is

suggested to categorize ARP spoofing

prevention techniques.

Acknowledgements

The author is thankful to Prof. Abdul Karim,

Head, Department of Computer Science, Govt.

P.G College Rajouri, for his kind support.

References

[1] D. Plummer (1982). RFC826-An

Ethernet address resolution protocol or

converting network protocol addresses

to 48 bit Ethernet address for

transmission on Ethernet hardware.

[2] B. Fleck & J. Dimov (2001). Wireless

Access Points and ARP Poisoning:

Wireless vulnerabilities that expose the

wired network. Cigital Inc. Retrieved

from

http://www.Packetnexus.com/docs/

arppoison.pdf as accessed on 02-04-

2010.

[3] T. Ylonen (1996). SSH: Secure login

connections over internet. Sixth

conference on USENIX Security

Symposium, Focusing on Applications

of Cryptography, 6, 37-42.

[4] T. Dierks & C. Allen (1999). RFC2246-

The TLS protocol

[5] S. Whalen (2001). An introduction to

Arp spoofing. Retrieved from

http://www.packetstormsecurity.com/pa

pers/protocols/introtoarpspoo fing.pdf

as accessed on 02-04-2010.

[6] V. Goyal & R. Tripathy (2005). An

efficient solution to the ARP cache

poisoning problem. Information

security and privacy, Springer Berlin,

40-51. doi: 10.1007/b137750.

JK Knowledge Initiative 2017; 1(2): 12

[7] D. Bruschi, A. Ornaghi & E. Rosti

(2003). S-ARP: a secure address

resolution protocol. 19th Annual

Computer Security Applications

Conference (ACSAC '03), pp. 66.

[8] W. Lootah, W. Enck, & P. McDaniel

(2007). TARP: Ticket-based address

resolution protocol. The International

Journal of Computer and

Telecommunications Networking,

51(15), 4322-4327.

[9] T.Ilya (2002). Arp spoofing defense.

Retrieved from

http://www.securityfocus.com/archive

/1/299929 as accessed on 12-04-2010.

[10] T. Demuth & A. Lietner (2005). Arp

spoofing and poisoning-traffic tricks.

Retrieved from http://www.linux-

magazine.com/w3/issue/56/

ARPSpoofing. pdf as accessed on 12-

04-2010.

[11] J.L.Tai, N. A. Yahaya & K. D. Wong

(2009). Address Resolution Protocol

Optimization. Jurnal Kejuruteraan, 21,

11-20.

[12] M. Carnut and J. Gondim (2003). Arp

spoofing detection on switched Ethernet

networks: A feasibility study. In

proceedings of the 5th Simposio

Seguranca em Informatica (Symposium

Security in Informatics), Brazil.

[13] Z. Trabelsi & W. El-Hajj (2007).

Preventing ARP Attacks using a Fuzzy-

Based Stateful ARP Cache. In

proceedings of IEEE International

Conference on Communications (IEEE

ICC'07), Glasgow, Scotland.

[14] LBNL Research Group. Arpwatch tool.

Retrieved from

ftp://ftp.ee.lbl.gov/arpwatch.tar.gz as

accessed on 20-04-2010.

[15] V. Ramachandran & S. Nandi (2005).

Detecting ARP Spoofing: An Active

Technique. Information security and

privacy, Springer Berlin, 239-250. doi:

10.1007/11593980_18.

[16] Y.LIU, K.DONG & L. DONG, B. LI

(2008). Research of the ARP spoofing

principle and a defensive algorithm.

WSEAS Transactions on

Communications, 7, 516-520.

[17] Ryan D. Riley, Nada Mohaamed Ali,

Kholoud Saleh Al-Senaidi & Aisha

Lahdan Al-Kuwari (2010). Empowering

users against sidejacking attacks.In

Proceedings of the ACM SIGCOMM

2010.

